He Mengyu, Jin Chen, Li Cheng, Cai Zeyi, Peng Dongdong, Huang Xiang, Wang Jun, Zhai Yuanning, Qi Hengnian, Zhang Chu
School of Information Engineering, Huzhou University, 313000 Huzhou, China.
Food Chem X. 2024 May 17;22:101481. doi: 10.1016/j.fochx.2024.101481. eCollection 2024 Jun 30.
Rapid and accurate determination of pigment content is important for quality inspection of spinach leaves during storage. This study aimed to use hyperspectral imaging at two spectral ranges (visible/near-infrared, VNIR: 400-1000 nm; NIR: 900-1700 nm) to simultaneously determine the pigment (chlorophyll , chlorophyll , total chlorophyll, and carotenoids) content in spinach stored at different durations and conditions (unpackaged and packaged). Partial least squares (PLS), back propagation neural network (BPNN) and convolutional neural network (CNN) were used to establish single-task and multi-task regression models. Single-task CNN (STCNN) models and multi-task CNN (MTCNN) models obtained better performances than the other models. The models using VNIR spectra were superior to those using NIR spectra. The overall results indicated that hyperspectral imaging with multi-task learning could predict the quality attributes of spinach simultaneously for spinach quality inspection under various storage conditions. This research will guide food quality inspection by simultaneously inspecting multiple quality attributes.
快速准确地测定色素含量对于菠菜叶储存期间的质量检测至关重要。本研究旨在利用两个光谱范围(可见/近红外,VNIR:400 - 1000 nm;近红外,NIR:900 - 1700 nm)的高光谱成像技术,同时测定在不同储存时长和条件(未包装和包装)下菠菜中的色素(叶绿素a、叶绿素b、总叶绿素和类胡萝卜素)含量。采用偏最小二乘法(PLS)、反向传播神经网络(BPNN)和卷积神经网络(CNN)建立单任务和多任务回归模型。单任务CNN(STCNN)模型和多任务CNN(MTCNN)模型比其他模型表现更优。使用VNIR光谱的模型优于使用NIR光谱的模型。总体结果表明,采用多任务学习的高光谱成像技术能够同时预测菠菜在各种储存条件下的质量属性,用于菠菜质量检测。本研究将通过同时检测多个质量属性来指导食品质量检测。