胎儿性别发育及之后的经典遗传和激素调控机制。
Classic genetic and hormonal switches during fetal sex development and beyond.
作者信息
Holterhus Paul-Martin, Kulle Alexandra, Busch Hauke, Spielmann Malte
机构信息
Christian-Albrechts University of Kiel (CAU) Pediatric Endocrinology and Diabetes, Department of Pediatrics I Kiel Germany.
University of Lübeck Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology (LIED) Ratzeburger Allee 160 23562 Lübeck Germany.
出版信息
Med Genet. 2023 Aug 16;35(3):163-171. doi: 10.1515/medgen-2023-2036. eCollection 2023 Sep.
Critical genetic and hormonal switches characterize fetal sex development in humans. They are decisive for gonadal sex determination and subsequent differentiation of the genital and somatic sex phenotype. Only at the first glace these switches seem to behave like the dual 0 and 1 system in computer sciences and lead invariably to either typically male or female phenotypes. More recent data indicate that this model is insufficient. In addition, in case of distinct mutations, many of these switches may act variably, causing a functional continuum of alterations of gene functions and -dosages, enzymatic activities, sex hormone levels, and sex hormone sensitivity, giving rise to a broad clinical spectrum of biological differences of sex development (DSD) and potentially diversity of genital and somatic sex phenotypes. The gonadal anlage is initially a bipotential organ that can develop either into a testis or an ovary. is the most important upstream switch of gonadal sex determination inducing further downstream, leading to testicular Sertoli cell differentiation and the repression of ovarian pathways. If is absent (virtually "switched off"), e. g., in 46,XX females, , and other factors repress the male pathway and promote ovarian development. Testosterone and its more potent derivative, dihydrotestosterone (DHT) as well as AMH, are the most important upstream hormonal switches in phenotypic sex differentiation. Masculinization of the genitalia, i. e., external genital midline fusion forming the scrotum, growth of the genital tubercle, and Wolffian duct development, occurs in response to testosterone synthesized by steroidogenic cells in the testis. Müllerian ducts will not develop into a uterus and fallopian tubes in males due to Anti-Müllerian-Hormone (AMH) produced by the Sertoli cells. The functionality of these two hormone-dependent switches is ensured by their corresponding receptors, the intracellular androgen receptor (AR) and the transmembrane AMH type II receptor. The absence of high testosterone and high AMH is crucial for anatomically female genital development during fetal life. Recent technological advances, including single-cell and spatial transcriptomics, will likely shed more light on the nature of these molecular switches.
关键的基因和激素开关是人类胎儿性别发育的特征。它们对性腺性别决定以及随后生殖器和躯体性表型的分化起决定性作用。乍一看,这些开关似乎类似于计算机科学中的二元0和1系统,总是导致典型的男性或女性表型。然而,最近的数据表明这种模式并不充分。此外,在发生特定突变的情况下,许多这些开关可能会有不同的作用,导致基因功能和剂量、酶活性、性激素水平和性激素敏感性的改变形成一个功能连续体,从而产生广泛的性发育生物学差异(DSD)临床谱以及潜在的生殖器和躯体性表型多样性。性腺原基最初是一个双潜能器官,可以发育成睾丸或卵巢。 是性腺性别决定中最重要的上游开关,诱导 进一步向下游发展,导致睾丸支持细胞分化并抑制卵巢发育途径。如果 缺失(实际上“关闭”),例如在46,XX女性中, 以及其他因素会抑制男性发育途径并促进卵巢发育。睾酮及其更有效的衍生物双氢睾酮(DHT)以及抗苗勒管激素(AMH)是表型性别分化中最重要的上游激素开关。生殖器男性化,即外生殖器中线融合形成阴囊、生殖结节生长和沃尔夫管发育,是由睾丸中类固醇生成细胞合成的睾酮引起的。由于支持细胞产生的抗苗勒管激素(AMH),男性的苗勒管不会发育成子宫和输卵管。这两个激素依赖性开关的功能由它们相应的受体,即细胞内雄激素受体(AR)和跨膜AMH II型受体来确保。胎儿期高睾酮和高AMH的缺失对于女性生殖器的解剖学发育至关重要。包括单细胞和空间转录组学在内的最新技术进展可能会更清楚地揭示这些分子开关的本质。