Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States.
Department of Ecology, Evolution and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN 55108, United States.
J Hered. 2024 Oct 23;115(6):672-681. doi: 10.1093/jhered/esae030.
Male mice who are heterozygous for distorting and non-distorting alleles at the t-haplotype transmit the driving t-haplotype around 90% of the time-a drastic departure from Mendelian expectations. This selfish act comes at a cost. The mechanism underlying transmission distortion in this system causes severe sterility in males homozygous for the drive alleles, ultimately preventing its fixation. Curiously, many driving t-haplotypes also induce embryonic lethality in both sexes when homozygous; however, this is neither universal nor a necessity for this distortion mechanism. Charlesworth provided an adaptive explanation for the evolution of lethal t-haplotypes in a population segregating for distorting and non-distorting t alleles-if mothers compensate by replacing dead embryos with new offspring (or by transferring energy to surviving offspring), a recessive lethal can be favored because it effectively allows mothers the opportunity to trade in infertile males for potentially fertile offspring. This model, however, requires near complete reproductive compensation for the invasion of the lethal t-haplotype and produces an equilibrium frequency of lethal drivers well below what is observed in nature. We show that low levels of systemic inbreeding, which we model as brother-sister mating, allow lethal t-haplotypes to invade with much lower levels of reproductive compensation. Furthermore, inbreeding allows these lethal haplotypes to largely displace the ancestral male-sterile haplotypes. Our results show that together inbreeding and reproductive compensation move expected equilibria closer to observed haplotype frequencies in natural populations and occur under lower, potentially more reasonable, parameters.
杂合带有扭曲和非扭曲等位基因的雄性小鼠在传递驱动 t 单倍型时,大约有 90%的时间会偏离孟德尔预期。这种自私的行为是有代价的。在这个系统中,导致传输扭曲的机制会导致驱动等位基因纯合子的雄性严重不育,最终阻止其固定。奇怪的是,许多驱动 t 单倍型在纯合子时也会导致雌雄胚胎致死;然而,这种情况并非普遍存在,也不是这种扭曲机制的必要条件。查尔斯沃思(Charlesworth)为在分离出扭曲和非扭曲 t 等位基因的群体中驱动 t 单倍型的进化提供了一个适应性解释——如果母亲通过用新的后代替代死亡的胚胎(或向存活的后代转移能量)来补偿,那么隐性致死可以被偏爱,因为它有效地让母亲有机会用不育的雄性换取潜在的可育后代。然而,这个模型需要对致死 t 单倍型的入侵进行近乎完全的生殖补偿,并且产生的致死驱动等位基因的平衡频率远低于自然界中观察到的频率。我们表明,低水平的系统近亲繁殖(我们将其建模为兄妹交配)允许致死 t 单倍型以更低水平的生殖补偿进行入侵。此外,近亲繁殖使这些致死单倍型在很大程度上取代了祖先的雄性不育单倍型。我们的研究结果表明,近亲繁殖和生殖补偿一起将预期的平衡更接近自然种群中的观察到的单倍型频率,并在更低、潜在更合理的参数下发生。