Li Changqing, Kim Bumseop, Li Zhongping, Thapa Ranjit, Zhang Yifan, Seo Jeong-Min, Guan Runnan, Tang Feng, Baek Jae-Hoon, Kim Young Hyun, Jeon Jong-Pil, Park Noejung, Baek Jong-Beom
School of Energy and Chemical Engineering, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
Adv Mater. 2024 Aug;36(31):e2403151. doi: 10.1002/adma.202403151. Epub 2024 Jun 12.
Water electrolysis to produce hydrogen (H) using renewable energy is one of the most promising candidates for realizing carbon neutrality, but its reaction kinetics is hindered by sluggish anodic oxygen evolution reaction (OER). Ruthenium (Ru) in its high-valence state (oxide) provides one of the most active OER sites and is less costly, but thermodynamically unstable. The strong interaction between Ru nanoparticles (NPs) and nickel hydroxide (Ni(OH)) is leveraged to directly form Ru-Ni(OH) on the surface of a porous nickel foam (NF) electrode via spontaneous galvanic replacement reaction. The formation of Ru─O─Ni bonds at the interface of the Ru NPs and Ni(OH) (Ru-Ni(OH)) on the surface oxidized NF significantly enhance stability of the Ru-Ni(OH)/NF electrode. In addition to OER, the catalyst is active enough for the hydrogen evolution reaction (HER). As a result, it is able to deliver overpotentials of 228 and 15 mV to reach 10 mA cm for OER and HER, respectively. An industry-scale evaluation using Ru-Ni(OH)/NF as both OER and HER electrodes demonstrates a high current density of 1500 mA cm (OER: 410 mV; HER: 240 mV), surpassing commercial RuO (OER: 600 mV) and Pt/C based performance (HER: 265 mV).
利用可再生能源通过水电解制氢是实现碳中和最具潜力的途径之一,但其反应动力学受到缓慢的阳极析氧反应(OER)的阻碍。高价态(氧化物)的钌(Ru)提供了最活跃的析氧反应位点之一,且成本较低,但在热力学上不稳定。利用钌纳米颗粒(NPs)与氢氧化镍(Ni(OH))之间的强相互作用,通过自发的电偶置换反应在多孔泡沫镍(NF)电极表面直接形成Ru-Ni(OH)。在表面氧化的NF上,Ru NPs与Ni(OH)(Ru-Ni(OH))界面处Ru─O─Ni键的形成显著提高了Ru-Ni(OH)/NF电极的稳定性。除了析氧反应外,该催化剂对析氢反应(HER)也具有足够的活性。因此,对于析氧反应和析氢反应,它分别能够提供228和15 mV的过电位以达到10 mA cm 。使用Ru-Ni(OH)/NF作为析氧反应和析氢反应电极的工业规模评估表明,其具有1500 mA cm 的高电流密度(析氧反应:410 mV;析氢反应:240 mV),超过了商业RuO(析氧反应:600 mV)和基于Pt/C的性能(析氢反应:265 mV)。