Suppr超能文献

剖析不同高级氧化体系下磺胺嘧啶降解中间产物的生态风险:从毒性到抗生素抗性基因的命运。

Dissecting the ecological risks of sulfadiazine degradation intermediates under different advanced oxidation systems: From toxicity to the fate of antibiotic resistance genes.

机构信息

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.

出版信息

Sci Total Environ. 2024 Sep 1;941:173678. doi: 10.1016/j.scitotenv.2024.173678. Epub 2024 Jun 5.

Abstract

The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.

摘要

抗生素在水中不完全降解会产生具有环境风险的中间产物,因此值得关注。在这项研究中,从不同活性氧物种的角度出发,系统评估了高级氧化工艺对高浓度抗生素磺胺嘧啶(SDZ)的降解,考察了不同降解中间产物对抗生素抗性基因(ARGs)传播的影响。O3、过硫酸盐和光催化氧化体系分别以臭氧、直接电子转移和单线态氧、空穴和超氧自由基为主导,这些过程通过六种降解途径产生 15 种中间产物。值得注意的是,臭氧和过硫酸盐体系产生的三种特定中间产物比 SDZ 的毒性更大。相比之下,光催化体系没有产生任何毒性超过 SDZ 的中间产物。微宇宙实验结合宏基因组学证实,SDZ 及其中间产物处理后微生物群落结构发生了显著变化,包括黄杆菌属、Dungenella 属、Archangium 属和 Comamonas 属的丰度发生了显著变化。这种处理还导致了磺胺类抗生素抗性基因的出现。磺胺类抗生素抗性基因的总丰度与残留 SDZ 浓度呈正相关,在光催化体系中观察到的总丰度最低。此外,相关性分析揭示了携带磺胺类抗生素抗性基因的微生物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验