Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic.
Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
Mol Cell Proteomics. 2024 Jul;23(7):100795. doi: 10.1016/j.mcpro.2024.100795. Epub 2024 Jun 5.
At the molecular scale, adaptive advantages during plant growth and development rely on modulation of gene expression, primarily provided by epigenetic machinery. One crucial part of this machinery is histone posttranslational modifications, which form a flexible system, driving transient changes in chromatin, and defining particular epigenetic states. Posttranslational modifications work in concert with replication-independent histone variants further adapted for transcriptional regulation and chromatin repair. However, little is known about how such complex regulatory pathways are orchestrated and interconnected in cells. In this work, we demonstrate the utility of mass spectrometry-based approaches to explore how different epigenetic layers interact in Arabidopsis mutants lacking certain histone chaperones. We show that defects in histone chaperone function (e.g., chromatin assembly factor-1 or nucleosome assembly protein 1 mutations) translate into an altered epigenetic landscape, which aids the plant in mitigating internal instability. We observe changes in both the levels and distribution of H2A.W.7, altogether with partial repurposing of H3.3 and changes in the key repressive (H3K27me1/2) or euchromatic marks (H3K36me1/2). These shifts in the epigenetic profile serve as a compensatory mechanism in response to impaired integration of the H3.1 histone in the fas1 mutants. Altogether, our findings suggest that maintaining genome stability involves a two-tiered approach. The first relies on flexible adjustments in histone marks, while the second level requires the assistance of chaperones for histone variant replacement.
在分子水平上,植物生长和发育过程中的适应优势依赖于基因表达的调节,主要由表观遗传机制提供。该机制的一个关键部分是组蛋白翻译后修饰,它形成了一个灵活的系统,驱动染色质的瞬态变化,并定义特定的表观遗传状态。翻译后修饰与非复制依赖性组蛋白变体协同作用,进一步适应转录调控和染色质修复。然而,人们对这些复杂的调控途径如何在细胞中协调和相互联系知之甚少。在这项工作中,我们展示了基于质谱的方法在探索拟南芥突变体中不同表观遗传层相互作用的应用,这些突变体缺乏某些组蛋白伴侣。我们表明,组蛋白伴侣功能的缺陷(例如,染色质组装因子 1 或核小体组装蛋白 1 突变)会导致表观遗传景观发生改变,从而帮助植物减轻内部不稳定性。我们观察到 H2A.W.7 的水平和分布都发生了变化,与 H3.3 的部分重新定位以及关键抑制性(H3K27me1/2)或 euchromatic 标记(H3K36me1/2)的变化有关。这些表观遗传特征的变化是 fas1 突变体中 H3.1 组蛋白整合受损的补偿机制。总之,我们的研究结果表明,维持基因组稳定性需要采取两方面的措施。第一种方法依赖于组蛋白标记的灵活调整,而第二种方法则需要伴侣蛋白的协助来替代组蛋白变体。