Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.
Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.
Prog Neuropsychopharmacol Biol Psychiatry. 2024 Aug 30;134:111051. doi: 10.1016/j.pnpbp.2024.111051. Epub 2024 Jun 5.
Neurodevelopmental disorders such as autism spectrum disorder (ASD) have a heterogeneous etiology but are largely associated with genetic factors. Robust evidence from recent human genetic studies has linked mutations in the Shank2 gene to idiopathic ASD. Modeling these Shank2 mutations in animal models recapitulates behavioral changes, e.g. impaired social interaction and repetitive behavior of ASD patients. Shank2-deficient mice exhibit NMDA receptor (NMDAR) hypofunction and associated behavioral deficits. Of note, NMDARs are strongly implicated in cognitive flexibility. Their hypofunction, e.g. observed in schizophrenia, or their pharmacological inhibition leads to impaired cognitive flexibility. However, the association between Shank2 mutations and cognitive flexibility is poorly understood. Using Shank2-deficient mice, we explored the role of Shank2 in cognitive flexibility measured by the attentional set shifting task (ASST) and whether ASST performance in Shank2-deficient mice can be modulated by treatment with the partial NMDAR agonist D-cycloserine (DCS). Furthermore, we investigated the effects of Shank2 deficiency, ASST training, and DCS treatment on the expression level of NMDAR signaling hub components in the orbitofrontal cortex (OFC), including NMDAR subunits (GluN2A, GluN2B, GluN2C), phosphoglycerate dehydrogenase and serine racemase. Surprisingly, Shank2 deficiency did not affect ASST performance or alter the expression of the investigated NMDAR signaling hub components. Importantly, however, DCS significantly improved ASST performance, demonstrating that positive NMDAR modulation facilitates cognitive flexibility. Furthermore, DCS increased the expression of GluN2A in the OFC, but not that of other NMDAR signaling hub components. Our findings highlight the potential of DCS as a pharmacological intervention to improve cognitive flexibility impairments downstream of NMDAR modulation and substantiate the key role of NMDAR in cognitive flexibility.
神经发育障碍,如自闭症谱系障碍(ASD),具有异质性的病因,但主要与遗传因素有关。最近的人类遗传学研究提供了有力的证据,将 Shank2 基因的突变与特发性 ASD 联系起来。在动物模型中模拟这些 Shank2 突变可再现 ASD 患者的行为改变,例如社交互动受损和重复性行为。Shank2 缺陷小鼠表现出 NMDA 受体(NMDAR)功能低下和相关的行为缺陷。值得注意的是,NMDARs 强烈参与认知灵活性。它们的功能低下,例如在精神分裂症中观察到的,或其药理学抑制导致认知灵活性受损。然而,Shank2 突变与认知灵活性之间的关联知之甚少。使用 Shank2 缺陷小鼠,我们研究了 Shank2 在注意力设置转换任务(ASST)中测量的认知灵活性中的作用,以及 Shank2 缺陷小鼠的 ASST 表现是否可以通过使用部分 NMDAR 激动剂 D-环丝氨酸(DCS)来调节。此外,我们研究了 Shank2 缺乏、ASST 训练和 DCS 治疗对眶额皮层(OFC)中 NMDAR 信号枢纽成分表达水平的影响,包括 NMDAR 亚基(GluN2A、GluN2B、GluN2C)、磷酸甘油酸脱氢酶和丝氨酸消旋酶。令人惊讶的是,Shank2 缺乏并不影响 ASST 表现或改变研究的 NMDAR 信号枢纽成分的表达。然而,重要的是,DCS 显著改善了 ASST 表现,表明积极的 NMDAR 调节有助于认知灵活性。此外,DCS 增加了 OFC 中 GluN2A 的表达,但其他 NMDAR 信号枢纽成分的表达没有增加。我们的研究结果强调了 DCS 作为一种药理学干预的潜力,以改善 NMDAR 调节下游的认知灵活性障碍,并证实了 NMDAR 在认知灵活性中的关键作用。