Suppr超能文献

生物炭固定化水解酶通过调节氮磷循环降解 PET 微塑料并减轻土壤微生物功能的干扰。

Biochar immobilized hydrolase degrades PET microplastics and alleviates the disturbance of soil microbial function via modulating nitrogen and phosphorus cycles.

机构信息

Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu Province 730000, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

出版信息

J Hazard Mater. 2024 Aug 5;474:134838. doi: 10.1016/j.jhazmat.2024.134838. Epub 2024 Jun 5.

Abstract

Microplastics (MPs) pose an emerging threat to soil ecological function, yet effective solutions remain limited. This study introduces a novel approach using magnetic biochar immobilized PET hydrolase (MB-LCC-FDS) to degrade soil polyethylene terephthalate microplastics (PET-MPs). MB-LCC-FDS exhibited a 1.68-fold increase in relative activity in aquatic solutions and maintained 58.5 % residual activity after five consecutive cycles. Soil microcosm experiment amended with MB-LCC-FDS observed a 29.6 % weight loss of PET-MPs, converting PET into mono(2-hydroxyethyl) terephthalate (MHET). The generated MHET can subsequently be metabolized by soil microbiota to release terephthalic acid. The introduction of MB-LCC-FDS shifted the functional composition of soil microbiota, increasing the relative abundances of Microbacteriaceae and Skermanella while reducing Arthobacter and Vicinamibacteraceae. Metagenomic analysis revealed that MB-LCC-FDS enhanced nitrogen fixation, P-uptake and transport, and organic-P mineralization in PET-MPs contaminated soil, while weakening the denitrification and nitrification. Structural equation model indicated that changes in soil total carbon and Simpson index, induced by MB-LCC-FDS, were the driving factors for soil carbon and nitrogen transformation. Overall, this study highlights the synergistic role of magnetic biochar-immobilized PET hydrolase and soil microbiota in degrading soil PET-MPs, and enhances our understanding of the microbiome and functional gene responses to PET-MPs and MB-LCC-FDS in soil systems.

摘要

微塑料(MPs)对土壤生态功能构成了新兴威胁,但有效的解决方案仍然有限。本研究引入了一种使用磁性生物炭固定化 PET 水解酶(MB-LCC-FDS)来降解土壤聚对苯二甲酸乙二醇酯微塑料(PET-MPs)的新方法。MB-LCC-FDS 在水相中的相对活性提高了 1.68 倍,连续 5 次循环后仍保持 58.5%的残余活性。在添加了 MB-LCC-FDS 的土壤微宇宙实验中,观察到 PET-MPs 的重量损失了 29.6%,将 PET 转化为单(2-羟乙基)对苯二甲酸(MHET)。生成的 MHET 随后可被土壤微生物群落代谢,释放对苯二甲酸。MB-LCC-FDS 的引入改变了土壤微生物群落的功能组成,增加了微杆菌科和 Skermanella 的相对丰度,同时减少了节杆菌科和 Vicinamibacteraceae。宏基因组分析显示,MB-LCC-FDS 增强了氮固定、磷吸收和转运以及有机磷矿化在 PET-MPs 污染土壤中的作用,同时削弱了反硝化和硝化作用。结构方程模型表明,MB-LCC-FDS 引起的土壤总碳和辛普森指数的变化是土壤碳氮转化的驱动因素。总的来说,本研究强调了磁性生物炭固定化 PET 水解酶和土壤微生物群落在降解土壤 PET-MPs 中的协同作用,提高了我们对土壤系统中微生物组和功能基因对 PET-MPs 和 MB-LCC-FDS 的响应的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验