IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I, 2nd Floor, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Basement S-1, 08019 Barcelona, Spain.
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.
Bioelectrochemistry. 2024 Oct;159:108757. doi: 10.1016/j.bioelechem.2024.108757. Epub 2024 Jun 4.
The utilization of biomimetic membranes supported by advanced self-assembled monolayers is gaining attraction as a promising sensing tool. Biomimetic membranes offer exceptional biocompatibility and adsorption capacity upon degradation, transcending their role as mere research instruments to open new avenues in biosensing. This study focused on anchoring a sparsely tethered bilayer lipid membrane onto a self-assembled monolayer composed of a biodegradable polymer, functionalized with poly(ethylene glycol)-cholesterol moieties, for lipid membrane integration. Real-time monitoring via quartz crystal microbalance, coupled with characterization using surface-enhanced infrared absorption spectroscopy and electrochemical impedance spectroscopy, provided comprehensive insights into each manufacturing phase. The resulting lipid layer, along with transmembrane pores formed by gramicidin A, exhibited robust stability. Electrochemical impedance spectroscopy analysis confirmed membrane integrity, successful pore formation, and consistent channel density. Notably, gramicidin A demonstrated sustained functionality as an ion channel upon reconstitution, with its functionality being effectively blocked and inhibited in the presence of calcium ions. These findings mark significant strides in developing intricate biodegradable nanomaterials with promising applications in biomedicine.
基于先进自组装单层的仿生膜的利用作为一种有前途的传感工具越来越受到关注。仿生膜在降解时具有优异的生物相容性和吸附能力,超越了仅仅作为研究工具的角色,为生物传感开辟了新途径。本研究专注于将稀疏连接的双层脂质膜锚定在自组装单层上,该自组装单层由具有聚乙二醇-胆固醇部分的可生物降解聚合物组成,用于脂质膜集成。通过石英晶体微天平进行实时监测,并结合表面增强红外吸收光谱和电化学阻抗光谱进行表征,全面了解每个制造阶段。所得的脂质层,以及由短杆菌肽 A 形成的跨膜孔,表现出良好的稳定性。电化学阻抗光谱分析证实了膜的完整性、成功的孔形成和一致的通道密度。值得注意的是,短杆菌肽 A 在重新构成时表现出持续的离子通道功能,并且在存在钙离子时其功能被有效阻断和抑制。这些发现标志着在开发具有复杂生物降解纳米材料方面取得了重大进展,这些纳米材料在生物医学中有广阔的应用前景。