Currie Geoffrey M, Hawk K Elizabeth, Rohren Eric M
School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, Australia; Dept of Radiology, Baylor College of Medicine, Houston.
School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, Australia; Dept of Radiology, Stanford University, Stanford.
Semin Nucl Med. 2025 May;55(3):423-436. doi: 10.1053/j.semnuclmed.2024.05.005. Epub 2024 Jun 8.
Generative artificial intelligence (AI) algorithms for both text-to-text and text-to-image applications have seen rapid and widespread adoption in the general and medical communities. While limitations of generative AI have been widely reported, there remain valuable applications in patient and professional communities. Here, the limitations and biases of both text-to-text and text-to-image generative AI are explored using purported applications in medical imaging as case examples. A direct comparison of the capabilities of four common text-to-image generative AI algorithms is reported and recommendations for the most appropriate use, DALL-E 3, justified. The risks use and biases are outlined, and appropriate use guidelines framed for use of generative AI in nuclear medicine. Generative AI text-to-text and text-to-image generation includes inherent biases, particularly gender and ethnicity, that could misrepresent nuclear medicine. The assimilation of generative AI tools into medical education, image interpretation, patient education, health promotion and marketing in nuclear medicine risks propagating errors and amplification of biases. Mitigation strategies should reside inside appropriate use criteria and minimum standards for quality and professionalism for the application of generative AI in nuclear medicine.
用于文本到文本和文本到图像应用的生成式人工智能(AI)算法已在普通社区和医学社区中得到迅速且广泛的应用。虽然生成式AI的局限性已被广泛报道,但在患者和专业群体中仍存在有价值的应用。在此,以医学成像中的所谓应用为例,探讨文本到文本和文本到图像生成式AI的局限性和偏差。报告了四种常见文本到图像生成式AI算法能力的直接比较,并为最适当的使用方式——DALL-E 3提供了合理依据。概述了使用风险和偏差,并制定了在核医学中使用生成式AI的适当使用指南。生成式AI的文本到文本和文本到图像生成存在固有偏差,尤其是性别和种族方面的偏差,这可能会对核医学造成错误描述。将生成式AI工具融入核医学的医学教育、图像解读、患者教育、健康促进和营销中,有传播错误和扩大偏差的风险。缓解策略应基于在核医学中应用生成式AI的适当使用标准以及质量和专业性的最低标准。