Nawara Tomasz J, Yuan Jie, Seeley Leslie D, Sztul Elizabeth, Mattheyses Alexa L
Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
Biophys J. 2025 Jun 3;124(11):1763-1770. doi: 10.1016/j.bpj.2024.06.007. Epub 2024 Jun 8.
Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs. It remains elusive how ECs maintain CME in these biophysically unfavorable conditions. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here, we asked whether biophysical stresses generated by blood flow influence CME. We used our data processing platform-DrSTAR-to examine if clathrin dynamics are altered in HUVECs after experiencing fluidic shear stress (FSS). We found that HUVECs cultivated under a physiological level of FSS had increased clathrin dynamics compared with static controls. FSS increased both clathrin-coated vesicle formation and nonproductive flat clathrin lattices by 2.3-fold and 1.9-fold, respectively. The curvature-positive events had significantly delayed curvature initiation relative to clathrin recruitment in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and clathrin-coated vesicle formation can be modulated by the local physiological environment and represent an important regulatory mechanism.
内皮细胞(ECs)会经历各种高度动态的机械应力。其中,周期性拉伸和质膜张力增加会抑制非内皮细胞中的网格蛋白介导的内吞作用(CME)。在内皮细胞如何在这些生物物理条件不利的情况下维持CME仍不清楚。此前,我们使用同步双波长轴向比率测量(STAR)显微镜来表明,静态培养的人脐静脉内皮细胞(HUVECs)和成纤维细胞样的Cos-7细胞之间的内吞动力学相似。在这里,我们询问血流产生的生物物理应力是否会影响CME。我们使用我们的数据处理平台-DrSTAR-来检查在经历流体剪切应力(FSS)后,HUVECs中的网格蛋白动力学是否发生改变。我们发现,与静态对照相比,在生理水平的FSS下培养的HUVECs的网格蛋白动力学增加。FSS使网格蛋白包被囊泡形成和非生产性扁平网格蛋白晶格分别增加了2.3倍和1.9倍。相对于流动刺激细胞中的网格蛋白募集,曲率阳性事件的曲率起始明显延迟,这突出了在囊泡形成中向扁平到弯曲的网格蛋白转变的转变。总体而言,我们的研究结果表明,网格蛋白动力学和网格蛋白包被囊泡形成可以受到局部生理环境的调节,并且代表了一种重要的调节机制。