Morgenstern Travis J, Darko-Boateng Arden, Afriyie Emmanuel, Shanmugam Sri Karthika, Zhou Xinle, Choudhury Papiya, Desai Meera, Kass Robert S, Clarke Oliver B, Colecraft Henry M
Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY.
Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY.
bioRxiv. 2024 May 31:2024.05.28.596281. doi: 10.1101/2024.05.28.596281.
Targeted recruitment of E3 ubiquitin ligases to degrade traditionally undruggable proteins is a disruptive paradigm for developing new therapeutics. Two salient limitations are that <2% of the ~600 E3 ligases in the human genome have been exploited to produce proteolysis targeting chimeras (PROTACs), and the efficacy of the approach has not been demonstrated for a vital class of complex multi-subunit membrane proteins- ion channels. NEDD4-1 and NEDD4-2 are physiological regulators of myriad ion channels, and belong to the 28-member HECT (homologous to E6AP C-terminus) family of E3 ligases with widespread roles in cell/developmental biology and diverse diseases including various cancers, immunological and neurological disorders, and chronic pain. The potential efficacy of HECT E3 ligases for targeted protein degradation is unexplored, constrained by a lack of appropriate binders, and uncertain due to their complex regulation by layered intra-molecular and posttranslational mechanisms. Here, we identified a nanobody that binds with high affinity and specificity to a unique site on the N-lobe of the NEDD4-2 HECT domain at a location physically separate from sites critical for catalysis- the E2 binding site, the catalytic cysteine, and the ubiquitin exosite- as revealed by a 3.1 Å cryo-electron microscopy reconstruction. Recruiting endogenous NEDD4-2 to diverse ion channel proteins (KCNQ1, ENaC, and Ca2.2) using a divalent (DiVa) nanobody format strongly reduced their functional expression with minimal off-target effects as assessed by global proteomics, compared to simple NEDD4-2 overexpression. The results establish utility of a HECT E3 ligase for targeted protein downregulation, validate a class of complex multi-subunit membrane proteins as susceptible to this modality, and introduce endogenous E3 ligase recruitment with DiVa nanobodies as a general method to generate novel genetically-encoded ion channel inhibitors.
将E3泛素连接酶靶向募集以降解传统上难以成药的蛋白质是开发新疗法的一种颠覆性范例。两个显著的局限性在于,人类基因组中约600种E3连接酶中只有不到2%被用于生产靶向蛋白降解嵌合体(PROTAC),而且对于一类重要的复杂多亚基膜蛋白——离子通道,该方法的有效性尚未得到证实。NEDD4-1和NEDD4-2是众多离子通道的生理调节因子,属于28成员的HECT(与E6AP C末端同源)家族E3连接酶,在细胞/发育生物学以及包括各种癌症、免疫和神经疾病及慢性疼痛在内的多种疾病中发挥广泛作用。HECT E3连接酶在靶向蛋白降解方面的潜在功效尚未得到探索,这受到缺乏合适结合剂的限制,并且由于其受分层分子内和翻译后机制的复杂调控而具有不确定性。在此,我们鉴定出一种纳米抗体,它以高亲和力和特异性结合到NEDD4-2 HECT结构域N叶上的一个独特位点,该位点在物理位置上与催化关键位点——E2结合位点、催化半胱氨酸和泛素外位点——分开,这是通过3.1 Å冷冻电子显微镜重建揭示的。与简单的NEDD4-2过表达相比,使用二价(DiVa)纳米抗体形式将内源性NEDD4-2募集到多种离子通道蛋白(KCNQ1、ENaC和Ca2.2)上,通过全局蛋白质组学评估,能以最小的脱靶效应强烈降低它们的功能表达。这些结果确立了HECT E3连接酶在靶向蛋白下调中的效用,验证了一类复杂多亚基膜蛋白对这种方式敏感,并引入了用DiVa纳米抗体募集内源性E3连接酶作为一种生成新型基因编码离子通道抑制剂的通用方法。