Tomezsko Phillip J, Ford Colby T, Meyer Avery E, Michaleas Adam M, Jaimes Rafael
MIT Lincoln Laboratory, Lexington, MA, United States.
Tuple LLC, Charlotte, NC, United States.
Front Bioinform. 2024 May 24;4:1397968. doi: 10.3389/fbinf.2024.1397968. eCollection 2024.
Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.
随着新冠病毒(SARS-CoV-2)与人类宿主共同进化,了解其与人类免疫系统之间的相互作用对于新型变异株的特征描述至关重要。在本研究中,我们运用最先进的分子对接工具进行大规模虚拟筛选,预测64种人类细胞因子与六种β冠状病毒的17种核衣壳蛋白之间的结合亲和力。我们的全面分析揭示了细胞因子 - 核衣壳蛋白相互作用的特定变化,为感染期间宿主免疫反应的潜在调节因子提供了线索。这些发现为病毒发病机制的分子机制提供了有价值的见解,并可能指导未来靶向干预措施的开发。本手稿深入探讨了基于深度学习的AlphaFold2 - Multimer和基于半物理化学的HADDOCK在蛋白质 - 蛋白质对接方面的比较。我们表明这两种方法在预测能力上具有互补性。我们还引入了一种使用图编辑距离快速评估蛋白质 - 蛋白质对接结合界面的新算法:基于图的界面残基评估函数(GIRAF)。这里提出的高性能计算框架不仅将有助于加速发现针对新出现病毒威胁的有效干预措施,还将扩展到高通量蛋白质 - 蛋白质筛选的其他应用。