文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

卡维地洛对人前列腺组织收缩性和基质细胞生长的影响,提示其潜在的临床意义。

Effects of carvedilol on human prostate tissue contractility and stromal cell growth pointing to potential clinical implications.

作者信息

Hu Sheng, Müderrisoglu A Elif, Ciotkowska Anna, Kale Oluwafemi, Keller Patrick, Schott Melanie, Tamalunas Alexander, Waidelich Raphaela, Stief Christian G, Hennenberg Martin

机构信息

Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany.

Urologische Klinik und Poliklinik, Marchioninistr. 15, 81377, Munich, Germany.

出版信息

Pharmacol Rep. 2024 Aug;76(4):807-822. doi: 10.1007/s43440-024-00605-5. Epub 2024 Jun 11.


DOI:10.1007/s43440-024-00605-5
PMID:38858312
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11294394/
Abstract

BACKGROUND: Apart from antagonizing ß-adrenoceptors, carvedilol antagonizes vascular α-adrenoceptors and activates G protein-independent signaling. Even though it is a commonly used antihypertensive and α-adrenoceptors are essential for the treatment of voiding symptoms in benign prostatic hyperplasia, its actions in the human prostate are still unknown. Here, we examined carvedilol effects on contractions of human prostate tissues, and on stromal cell growth. METHODS: Contractions of prostate tissues from radical prostatectomy were induced by electric field stimulation (EFS) or α-agonists. Growth-related functions were examined in cultured stromal cells. RESULTS: Concentration-response curves for phenylephrine, methoxamine and noradrenaline were right shifted by carvedilol (0.1-10 µM), around half a magnitude with 100 nM, half to one magnitude with 1 µM, and two magnitudes with 10 µM. Right shifts were reflected by increased EC values for agonists, with unchanged E values. EFS-induced contractions were reduced by 21-54% with 0.01-1 µM carvedilol, and by 94% by 10 µM. Colony numbers of stromal cells were increased by 500 nM, but reduced by 1-10 µM carvedilol, while all concentrations reduced colony size. Decreases in viability were time-dependent with 0.1-0.3 µM, but complete with 10 µM. Proliferation was slightly increased by 0.1-0.5 µM, but reduced with 1-10 µM. CONCLUSIONS: Carvedilol antagonizes α-adrenoceptors in the human prostate, starting with concentrations in ranges of known plasma levels. In vitro, effect sizes resemble those of α-blockers used for the treatment of voiding symptoms, which requires concentrations beyond plasma levels. Bidirectional and dynamic effects on the growth of stromal cells may be attributed to "biased agonism".

摘要

背景:除拮抗β-肾上腺素能受体外,卡维地洛还可拮抗血管α-肾上腺素能受体并激活非G蛋白依赖性信号传导。尽管它是常用的抗高血压药物,且α-肾上腺素能受体对良性前列腺增生排尿症状的治疗至关重要,但其在人前列腺中的作用仍不清楚。在此,我们研究了卡维地洛对人前列腺组织收缩及基质细胞生长的影响。 方法:通过电场刺激(EFS)或α-激动剂诱导前列腺癌根治术切除的前列腺组织收缩。在培养的基质细胞中检测与生长相关的功能。 结果:苯肾上腺素、甲氧明和去甲肾上腺素的浓度-反应曲线被卡维地洛(0.1 - 10 μM)右移,100 nM时约右移半个数量级,1 μM时右移半至一个数量级,10 μM时右移两个数量级。右移表现为激动剂的EC值增加,而E值不变。0.01 - 1 μM卡维地洛使EFS诱导的收缩减少21% - 54%,10 μM时减少94%。500 nM卡维地洛增加基质细胞集落数,但1 - 10 μM卡维地洛使其减少,而所有浓度均减小集落大小。0.1 - 0.3 μM卡维地洛使细胞活力下降呈时间依赖性,10 μM时则完全丧失活力。0.1 - 0.5 μM卡维地洛使细胞增殖略有增加,但1 - 10 μM时则减少。 结论:卡维地洛可拮抗人前列腺中的α-肾上腺素能受体,起始浓度处于已知血浆水平范围内。在体外,其效应大小类似于用于治疗排尿症状的α-阻滞剂,而这需要超出血浆水平的浓度。对基质细胞生长的双向和动态影响可能归因于“偏向性激动作用”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/d9ed492f374e/43440_2024_605_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/1da6eead8961/43440_2024_605_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/d4c4ac8c0abe/43440_2024_605_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/0c6e148d6ac8/43440_2024_605_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/983f6acf7165/43440_2024_605_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/d7c94f86e6c3/43440_2024_605_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/a10db293df37/43440_2024_605_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/d9ed492f374e/43440_2024_605_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/1da6eead8961/43440_2024_605_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/d4c4ac8c0abe/43440_2024_605_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/0c6e148d6ac8/43440_2024_605_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/983f6acf7165/43440_2024_605_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/d7c94f86e6c3/43440_2024_605_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/a10db293df37/43440_2024_605_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0ca/11294394/d9ed492f374e/43440_2024_605_Fig7_HTML.jpg

相似文献

[1]
Effects of carvedilol on human prostate tissue contractility and stromal cell growth pointing to potential clinical implications.

Pharmacol Rep. 2024-8

[2]
Inhibition of human prostate stromal cell growth and smooth muscle contraction by thalidomide: A novel remedy in LUTS?

Prostate. 2021-5

[3]
Antagonism of α-adrenoceptors by β-adrenergic agonists: Structure-function relations of different agonists in prostate smooth muscle contraction.

Biochem Pharmacol. 2022-8

[4]
New strategies for inhibition of non-adrenergic prostate smooth muscle contraction by pharmacologic intervention.

Prostate. 2019-5

[5]
Concentration-dependent alpha-Adrenoceptor Antagonism and Inhibition of Neurogenic Smooth Muscle Contraction by Mirabegron in the Human Prostate.

Front Pharmacol. 2021-6-24

[6]
Onvansertib, a polo-like kinase 1 inhibitor, inhibits prostate stromal cell growth and prostate smooth muscle contraction, which is additive to inhibition by α-blockers.

Eur J Pharmacol. 2020-2-1

[7]
P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate.

PLoS One. 2016-4-12

[8]
The receptor antagonist picotamide inhibits adrenergic and thromboxane-induced contraction of hyperplastic human prostate smooth muscle.

Am J Physiol Renal Physiol. 2013-9-18

[9]
Non-Adrenergic, Tamsulosin-Insensitive Smooth Muscle Contraction is Sufficient to Replace α -Adrenergic Tension in the Human Prostate.

Prostate. 2017-5

[10]
Inhibition of human prostate smooth muscle contraction by the inhibitors of protein kinase C, GF109203X, and Go6983.

Prostate. 2022-1

引用本文的文献

[1]
Voiding symptom severity varies independently from non-adrenergic prostate smooth muscle contractions in patients undergoing surgery for benign prostatic hyperplasia.

Front Physiol. 2025-5-30

[2]
Antagonism of prostate α-adrenoceptors by verapamil in human prostate smooth muscle contraction.

J Pharmacol Exp Ther. 2025-5-8

本文引用的文献

[1]
Isoform-independent promotion of contractility and proliferation, and suppression of survival by with no lysine/K kinases in prostate stromal cells.

FASEB J. 2024-4-15

[2]
Effects of the beta-blocker carvedilol on arrhythmia and long-term clinical outcomes in benign prostate hypertrophy patients.

Medicine (Baltimore). 2023-9-8

[3]
Selective inhibition of neurogenic, but not agonist-induced contractions by phospholipase A inhibitors points to presynaptic phospholipase A functions in contractile neurotransmission to human prostate smooth muscle.

Neurourol Urodyn. 2023-9

[4]
Adrenoceptors in the Lower Urinary Tract.

Handb Exp Pharmacol. 2024

[5]
Summary Paper on the 2023 European Association of Urology Guidelines on the Management of Non-neurogenic Male Lower Urinary Tract Symptoms.

Eur Urol. 2023-8

[6]
Inhibition of growth and contraction in human prostate stromal cells by silencing of NUAK1 and -2, and by the presumed NUAK inhibitors HTH01-015 and WZ4003.

Front Pharmacol. 2023-4-28

[7]
-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives.

Pharmacol Rev. 2023-9

[8]
Interactions between β-arrestin proteins and the cytoskeletal system, and their relevance to neurodegenerative disorders.

Front Endocrinol (Lausanne). 2023

[9]
Beta-blockers in patients with liver cirrhosis: Pragmatism or perfection?

Front Med (Lausanne). 2023-1-9

[10]
Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis.

J Cell Physiol. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索