Yan Hengxin, Xie Tangyao, Li Xinying, Pan Xiaolong, Bi Jiahao, Fang Liye, Lin Qiuying, Xin Xiangjun
Opt Express. 2024 May 6;32(10):17514-17524. doi: 10.1364/OE.520062.
The independent optical dual-single-sideband (dual-SSB) signal generation and detection can be achieved by an optical in-phase/quadrature (I/Q) modulator and one single photodiode (PD). The dual-SSB signal is able to carry two different information. After PD detection, the optical dual-SSB signal can be converted into an electrical millimeter-wave (mm-wave) signal. Therefore, the optical dual-SSB signal generation and detection technique can be employed in the radio-over-fiber (RoF) system to achieve higher system spectral efficiency and reduce system architecture complexity. However, the I/Q modulator's nonideal property results in the amplitude imbalance of the optical dual-SSB signal, and then the crosstalk can occur. Moreover, after PD detection, the generated mm-wave signal based on the optical dual-SSB modulation has a relatively low signal-to-noise ratio (SNR), which restricts the system performance. In this paper, we propose an optical asymmetrical dual-SSB signal generation and detection scheme based on the probabilistic shaping (PS) technology, to decrease the influence of the optical dual-SSB signal's amplitude imbalance and to enhance the system performance in the scenario of the limited SNR. The dual-SSB in our scheme is composed of the left sideband (LSB) in probabilistic-shaping geometric-shaping 4-ary quadrature amplitude modulation (PS-GS4QAM) format and the right sideband (RSB) in quadrature phase-shift keying (QPSK) format. The transmitter digital signal processing (DSP) generates a dual-SSB signal to drive the optical I/Q modulator. The I/Q modulator implements an electrical-to-optical conversion and generates an optical dual-SSB signal. After PD detection, the optical dual-SSB signal is converted into a PS-16QAM mm-wave signal. In our simulation, compared with the normal 16QAM scenario, the PS-16QAM scenario exhibits a ∼1.2 dB receiver sensitivity improvement at the hard-decision forward error correction (HD-FEC) threshold of 3.8×10. Therefore, in our experiment, based on the PS technology, we design a dual-SSB signal including a 5 Gbaud LSB-PS-GS4QAM at -15 GHz and a 5 Gbaud RSB-QPSK at 20 GHz. After 5 km standard single-mode fiber (SSMF) transmission and PD detection, the dual-SSB signal is converted into a 5 Gbaud PS-16QAM mm-wave signal at 35 GHz. Then, the generated PS-16QAM signal is sent into a 1.2 m single-input-single-output (SISO) wireless link. In the DSP at the receiver end, the dual-SSB signal can be recovered from the mm-wave signal, and the PS-GS4QAM and QPSK data carried by the dual-SSB signal can be separated. The bit error rates (BERs) of the LSB-PS-GS4QAM and the RSB-QPSK in our experiment can be below the HD-FEC threshold of 3.8×10. The results demonstrate that our scheme can tolerate the I/Q modulator's nonideal property and performs well in the scenario of a relatively low SNR.
独立的光学双单边带(dual-SSB)信号生成与检测可通过一个光学同相/正交(I/Q)调制器和一个单光电二极管(PD)来实现。双单边带信号能够携带两种不同的信息。经过光电二极管检测后,光学双单边带信号可转换为电毫米波(mm-wave)信号。因此,光学双单边带信号生成与检测技术可应用于光纤无线(RoF)系统,以实现更高的系统频谱效率并降低系统架构复杂度。然而,I/Q调制器的非理想特性会导致光学双单边带信号的幅度失衡,进而可能出现串扰。此外,经过光电二极管检测后,基于光学双单边带调制生成的毫米波信号具有相对较低的信噪比(SNR),这限制了系统性能。在本文中,我们提出了一种基于概率整形(PS)技术的光学非对称双单边带信号生成与检测方案,以减少光学双单边带信号幅度失衡的影响,并在有限信噪比的场景下提升系统性能。我们方案中的双单边带由概率整形几何整形四进制正交幅度调制(PS-GS4QAM)格式的左边带(LSB)和正交相移键控(QPSK)格式的右边带(RSB)组成。发射机数字信号处理(DSP)生成一个双单边带信号来驱动光学I/Q调制器。I/Q调制器实现电光转换并生成一个光学双单边带信号。经过光电二极管检测后,光学双单边带信号转换为一个PS-16QAM毫米波信号。在我们的仿真中,与普通16QAM场景相比,在3.8×10的硬判决前向纠错(HD-FEC)阈值下,PS-16QAM场景的接收机灵敏度提高了约1.2 dB。因此,在我们的实验中,基于PS技术,我们设计了一个双单边带信号,包括在-15 GHz的5 Gbaud左边带-PS-GS4QAM和在20 GHz的5 Gbaud右边带-QPSK。经过5 km标准单模光纤(SSMF)传输和光电二极管检测后,双单边带信号转换为35 GHz的5 Gbaud PS-16QAM毫米波信号。然后,生成的PS-16QAM信号被送入一个1.2 m单输入单输出(SISO)无线链路。在接收机端的DSP中,双单边带信号可从毫米波信号中恢复,并且双单边带信号携带的PS-GS4QAM和QPSK数据可被分离。我们实验中左边带-PS-GS4QAM和右边带-QPSK的误码率(BER)可低于3.8×10的HD-FEC阈值。结果表明,我们的方案能够容忍I/Q调制器的非理想特性,并且在相对较低信噪比的场景下表现良好。