Suppr超能文献

基于扩散模型的相移轮廓术对透明物体的重建

Reconstruction of transparent objects using phase shifting profilometry based on diffusion models.

作者信息

Zhang Qinghui, Liu Feng, Lu Lei, Su Zhilong, Pan Wei, Dai Xiangjun

出版信息

Opt Express. 2024 Apr 8;32(8):13342-13356. doi: 10.1364/OE.520937.

Abstract

Phase shifting profilometry is an important technique for reconstructing the three-dimensional (3D) geometry of objects with purely diffuse surfaces. However, it is challenging to measure the transparent objects due to the pattern aliasing caused by light refraction and multiple reflections inside the object. In this work, we analyze the aliasing fringe pattern formation for transparent objects and then, propose to learn the front surface light intensity distribution based on the formation principle by using the diffusion models for generating the non-aliased fringe patterns reflected from the front surface only. With the generated fringe patterns, the 3D shape of the transparent objects can be reconstructed via the conventional structured light. We show the feasibility and performance of the proposed method on the data of purely transparent objects that are not seen in the training stage. Moreover, we found it could be generalized to other cases with local-transparent and translucent objects, showing the potential capability of the diffusion based learnable framework in tackling the problems of transparent object reconstruction.

摘要

相移轮廓术是一种用于重建具有纯漫反射表面物体的三维(3D)几何形状的重要技术。然而,由于物体内部光折射和多次反射引起的图案混叠,测量透明物体具有挑战性。在这项工作中,我们分析了透明物体的混叠条纹图案形成,然后,基于形成原理,提出通过使用扩散模型来学习仅从前表面反射的无混叠条纹图案,从而学习前表面光强分布。利用生成的条纹图案,可以通过传统的结构光重建透明物体的3D形状。我们在训练阶段未见过的纯透明物体数据上展示了所提方法的可行性和性能。此外,我们发现它可以推广到其他具有局部透明和半透明物体的情况,显示了基于扩散的可学习框架在解决透明物体重建问题方面的潜在能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验