Suppr超能文献

深度学习增强型快照高光谱共聚焦显微镜成像系统

Deep learning-enhanced snapshot hyperspectral confocal microscopy imaging system.

作者信息

Liu Shuai, Zou Wenzhen, Sha Hao, Feng Xiaochen, Chen Bin, Zhang Jian, Han Sanyang, Li Xiu, Zhang Yongbing

出版信息

Opt Express. 2024 Apr 8;32(8):13918-13931. doi: 10.1364/OE.519045.

Abstract

Laser-scanning confocal hyperspectral microscopy is a powerful technique to identify the different sample constituents and their spatial distribution in three-dimensional (3D). However, it suffers from low imaging speed because of the mechanical scanning methods. To overcome this challenge, we propose a snapshot hyperspectral confocal microscopy imaging system (SHCMS). It combined coded illumination microscopy based on a digital micromirror device (DMD) with a snapshot hyperspectral confocal neural network (SHCNet) to realize single-shot confocal hyperspectral imaging. With SHCMS, high-contrast 160-bands confocal hyperspectral images of potato tuber autofluorescence can be collected by only single-shot, which is almost 5 times improvement in the number of spectral channels than previously reported methods. Moreover, our approach can efficiently record hyperspectral volumetric imaging due to the optical sectioning capability. This fast high-resolution hyperspectral imaging method may pave the way for real-time highly multiplexed biological imaging.

摘要

激光扫描共聚焦高光谱显微镜是一种强大的技术,可用于识别三维(3D)中不同的样品成分及其空间分布。然而,由于机械扫描方法,其成像速度较低。为了克服这一挑战,我们提出了一种快照高光谱共聚焦显微镜成像系统(SHCMS)。它将基于数字微镜器件(DMD)的编码照明显微镜与快照高光谱共聚焦神经网络(SHCNet)相结合,以实现单次共聚焦高光谱成像。使用SHCMS,仅通过单次拍摄就可以收集到马铃薯块茎自发荧光的高对比度160波段共聚焦高光谱图像,这在光谱通道数量上比以前报道的方法提高了近5倍。此外,由于光学切片能力,我们的方法可以有效地记录高光谱体积成像。这种快速的高分辨率高光谱成像方法可能为实时高度复用的生物成像铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验