Deng Xu, Xie Chenbo, Liu Dong, Wang Bangxing, Xing Kunming, Chen Jianfeng, Ji Jie, Wang Yingjian
Opt Express. 2024 Jun 3;32(12):21102-21120. doi: 10.1364/OE.523574.
This study investigates the macroscopic and optical properties of cirrus clouds in the 32N region from July 2016 to May 2017, leveraging data from ground-based lidar observations and CALIOP to overcome the inconsistencies in detected cirrus cloud samples. Through extensive data analysis, statistical characteristics of cirrus clouds were discerned, revealing lidar ratio values of 28.5 ± 10.8 from ground-based lidar and 27.4 ± 11.2 from CALIOP. Validation with a decade of CALIOP data (2008-2018) confirmed these findings, presenting a consistent lidar ratio of 27.4 ± 12.0. A significant outcome of the analysis was the identification of a positive correlation between the lidar ratio and cloud centroid temperature, indicating a gradual decrease in the lidar ratio as temperatures dropped. The study established a fundamental consistency in their macroscopic properties, including cloud base height, cloud top height, cloud thickness, cloud centroid height, and cloud centroid temperature. The results for ground-based lidar (CALIOP) are: 10.0 ± 2.1 km (10.0 ± 2.2 km), 11.8 ± 2.1 km (11.5 ± 2.3 km), 1.87 ± 0.83 km (1.52 ± 0.71 km), and 10.5 ± 2.2 km, -46.9 ± 9.7°C (-47.1 ± 10.0°C).These properties exhibited seasonal variations, with cirrus clouds reaching higher altitudes in summer and lower in winter, influenced by the height of the tropopause. The optical properties of cirrus clouds were also analyzed, showing an annual average optical depth of 0.31 ± 0.35 for ground-based lidar and 0.32 ± 0.44 for CALIOP. The study highlighted the distribution of subvisible, thin, and thick cirrus clouds, with a notable prevalence of subvisible clouds during summer, suggesting their frequent formation above 14 km. Furthermore, the study observed linear growth in geometric thickness and optical depth up to 2.5 km from CALIOP and 2.9 km from ground-based lidar. Maximum optical depth was observed at cloud centroid temperatures of -35°C for CALIOP and -40°C for ground-based lidar, with optical depth decreasing as temperatures fell. This suggests that fully glaciated cirrus clouds exhibit the highest optical depth at warmer temperatures, within the complete glaciation temperature range of -35°C to -40°C.
本研究利用地基激光雷达观测数据和云-气溶胶激光雷达和红外探路者卫星观测仪(CALIOP)的数据,调查了2016年7月至2017年5月32°N区域卷云的宏观和光学特性,以克服检测到的卷云样本中的不一致性。通过广泛的数据分析,识别出了卷云的统计特征,地基激光雷达测得的消光后向散射比为28.5±10.8,CALIOP测得的为27.4±11.2。用十年的CALIOP数据(2008 - 2018年)进行验证证实了这些发现,呈现出一致的消光后向散射比为27.4±12.0。该分析的一个重要成果是发现消光后向散射比与云质心温度之间存在正相关,表明随着温度下降,消光后向散射比逐渐降低。该研究在其宏观特性方面建立了基本的一致性,包括云底高度、云顶高度、云厚度、云质心高度和云质心温度。地基激光雷达(CALIOP)的结果如下:10.0±2.1千米(10.0±2.2千米)、11.8±2.1千米(11.5±2.3千米)、1.87±0.83千米(1.52±0.71千米),以及10.5±2.2千米,-46.9±9.7°C(-47.1±10.0°C)。这些特性呈现出季节性变化,卷云在夏季达到更高海拔,冬季则较低,这受对流层顶高度的影响。还分析了卷云的光学特性,地基激光雷达测得的年平均光学厚度为0.31±0.35,CALIOP测得的为0.32±0.44。该研究突出了亚可见、薄和厚卷云的分布情况,夏季亚可见云显著占优,表明它们常在14千米以上频繁形成。此外,该研究观察到,CALIOP测得的几何厚度和光学厚度在高达2.5千米的范围内呈线性增长,地基激光雷达测得的在高达2.9千米的范围内呈线性增长。CALIOP在云质心温度为-35°C时观测到最大光学厚度,地基激光雷达在云质心温度为-40°C时观测到最大光学厚度,随着温度下降光学厚度减小。这表明在-35°C至-40°C的完全冰相温度范围内,完全冰相的卷云在较温暖的温度下呈现出最高的光学厚度。