Suppr超能文献

通过密度泛函理论模拟、抗增殖评估、分子对接和药代动力学建模,利用β-烯胺腈合成四氢苯并[]噻吩候选物

β-Enaminonitrile in the synthesis of tetrahydrobenzo[]thiophene candidates with DFT simulation, antiproliferative assessment, molecular docking, and modeling pharmacokinetics.

作者信息

Elgubbi Amna S, El-Helw Eman A E, Abousiksaka Motaleb S, Alzahrani Abdullah Y A, Ramadan Sayed K

机构信息

Chemistry Department, Faculty of Science, Misurata University 2478 Misurata Libya.

Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt

出版信息

RSC Adv. 2024 Jun 10;14(26):18417-18430. doi: 10.1039/d4ra03363a. eCollection 2024 Jun 6.

Abstract

Among sulfur-including heterocycles, the benzothiophene skeleton is one of the worthy structure fragments that exhibit structural similarities with active substrates to develop various potent lead molecules in drug design. Thus, some tetrahydrobenzo[]thiophene candidates were prepared from the β-enaminonitrile scaffold reactions with diverse carbon-centered electrophilic reagents and supported with DFT studies. The antiproliferative effect was screened against MCF7 and HePG2 cancer cell lines, and the results displayed the highest potency of imide 5, Schiff base 11, and phthalimido 12 candidates. A molecular docking study was operated to explore the probable binding modes of interaction, and the results revealed the good binding affinity of compounds 5, 11, and 12 toward the tubulin protein (PDB ID 5NM5) with respect to paclitaxel (a tubulin inhibitor) and co-crystallized ligand (GTP). Besides, modeling pharmacokinetics analyses displayed their desirable drug-likeness and bioavailability properties.

摘要

在含硫杂环化合物中,苯并噻吩骨架是一种值得关注的结构片段,它与活性底物具有结构相似性,可用于药物设计中开发各种有效的先导分子。因此,通过β-烯胺腈支架与各种以碳为中心的亲电试剂反应制备了一些四氢苯并[]噻吩候选物,并通过密度泛函理论(DFT)研究进行了支持。针对MCF7和HePG2癌细胞系筛选了抗增殖作用,结果显示酰亚胺5、席夫碱11和邻苯二甲酰亚胺12候选物具有最高的活性。进行了分子对接研究以探索可能的相互作用结合模式,结果表明化合物5、11和12相对于紫杉醇(一种微管蛋白抑制剂)和共结晶配体(GTP)对微管蛋白(PDB ID 5NM5)具有良好的结合亲和力。此外,建模的药代动力学分析显示它们具有理想的类药物性质和生物利用度特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0302/11163414/c834b877252b/d4ra03363a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验