Suppr超能文献

通过结合吸附、液体侵入和固态核磁共振光谱法评估介孔二氧化硅的亲水性/疏水性

Assessment of Hydrophilicity/Hydrophobicity in Mesoporous Silica by Combining Adsorption, Liquid Intrusion, and Solid-State NMR Spectroscopy.

作者信息

Collados Carlos Cuadrado, Huber Christoph, Söllner Jakob, Grass Jan-Paul, Inayat Alexandra, Durdyyev Rustam, Smith Ana-Suncana, Wisser Dorothea, Hartmann Martin, Thommes Matthias

机构信息

Institution of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany.

Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany.

出版信息

Langmuir. 2024 Jun 25;40(25):12853-12867. doi: 10.1021/acs.langmuir.3c03516. Epub 2024 Jun 11.

Abstract

We have developed a comprehensive strategy for quantitatively assessing the hydrophilicity/hydrophobicity of nanoporous materials by combining advanced adsorption studies, novel liquid intrusion techniques, and solid-state NMR spectroscopy. For this, we have chosen a well-defined system of model materials, i.e., the highly ordered mesoporous silica molecular sieve SBA-15 in its pristine state and functionalized with different amounts of trimethylsilyl (TMS) groups, allowing one to accurately tailor the surface chemistry while maintaining the well-defined pore structure. For an absolute quantification of the trimethylsilyl group density, quantitative H solid-state NMR spectroscopy under magic angle spinning was employed. A full textural characterization of the materials was obtained by high-resolution argon 87 K adsorption, coupled with the application of dedicated methods based on nonlocal-density functional theory (NLDFT). Based on the known texture of the model materials, we developed a novel methodology allowing one to determine the effective contact angle of water adsorbed on the pore surfaces from complete wetting to nonwetting, constituting a powerful parameter for the characterization of the surface chemistry inside porous materials. The surface chemistry was found to vary from hydrophilic to hydrophobic as the TMS functionalization content was increased. For wetting and partially wetting surfaces, pore condensation of water is observed at pressures smaller than the bulk saturation pressure (i.e., at / < 1) and the effective contact angle of water on the pore walls could be derived from the water sorption isotherms. However, for nonwetting surfaces, pore condensation occurs at pressures above the saturation pressure (i.e., at / > 1). In this case, we investigated the pore filling of water (i.e., the vapor-liquid phase transition) by the application of a novel, liquid water intrusion/extrusion methodology, allowing one to derive the effective contact angle of water on the pore walls even in the case of nonwetting. Complementary molecular simulations provide density profiles of water on pristine and TMS-grafted silica surfaces (mimicking the tailored, functionalized experimental silica surfaces), which allow for a molecular view on the water adsorbate structure. Summarizing, we present a comprehensive and reliable methodology for quantitatively assessing the hydrophilicity/hydrophobicity of siliceous nanoporous materials, which has the potential to optimize applications in heterogeneous catalysis and separation (e.g., chromatography).

摘要

我们通过结合先进的吸附研究、新型液体侵入技术和固态核磁共振光谱,开发了一种用于定量评估纳米多孔材料亲水性/疏水性的综合策略。为此,我们选择了一个定义明确的模型材料体系,即原始状态且用不同量的三甲基硅烷基(TMS)基团功能化的高度有序介孔二氧化硅分子筛SBA - 15,这使得人们能够在保持明确的孔结构的同时精确调整表面化学性质。为了绝对定量三甲基硅烷基团密度,采用了魔角旋转下的定量氢固态核磁共振光谱。通过高分辨率87K氩吸附以及基于非局部密度泛函理论(NLDFT)的专用方法的应用,获得了材料的完整结构表征。基于模型材料已知的结构,我们开发了一种新颖的方法,能够确定从完全润湿到非润湿状态下吸附在孔表面的水的有效接触角,这是表征多孔材料内部表面化学性质的一个有力参数。随着TMS功能化含量的增加,发现表面化学性质从亲水性变为疏水性。对于润湿和部分润湿的表面,在压力小于本体饱和压力(即p/p0 < 1)时观察到水的孔内冷凝,并且水在孔壁上的有效接触角可以从水吸附等温线得出。然而,对于非润湿表面,孔内冷凝发生在高于饱和压力的压力下(即p/p0 > 1)。在这种情况下,我们通过应用一种新颖的液态水侵入/挤出方法研究了水的孔填充(即气 - 液相转变),即使在非润湿情况下也能得出水在孔壁上的有效接触角。互补的分子模拟提供了原始和TMS接枝二氧化硅表面上水的密度分布(模拟定制的、功能化的实验二氧化硅表面),这使得能够从分子角度观察水吸附物的结构。总之,我们提出了一种用于定量评估硅质纳米多孔材料亲水性/疏水性的全面且可靠的方法,该方法具有优化多相催化和分离(如色谱)应用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验