Suppr超能文献

多扩散模型直方图分析预测晚期非小细胞肺癌对化疗免疫治疗的反应。

Histogram analysis of multiple diffusion models for predicting advanced non-small cell lung cancer response to chemoimmunotherapy.

机构信息

Department of Magnetic Resonance, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.

Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, 730030, China.

出版信息

Cancer Imaging. 2024 Jun 11;24(1):71. doi: 10.1186/s40644-024-00713-8.

Abstract

BACKGROUND

There is an urgent need to find a reliable and effective imaging method to evaluate the therapeutic efficacy of immunochemotherapy in advanced non-small cell lung cancer (NSCLC). This study aimed to investigate the capability of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) histogram analysis based on different region of interest (ROI) selection methods for predicting treatment response to chemoimmunotherapy in advanced NSCLC.

METHODS

Seventy-two stage III or IV NSCLC patients who received chemoimmunotherapy were enrolled in this study. IVIM and DKI were performed before treatment. The patients were classified as responders group and non-responders group according to the Response Evaluation Criteria in Solid Tumors 1.1. The histogram parameters of ADC, Dslow, Dfast, f, Dk and K were measured using whole tumor volume ROI and single slice ROI analysis methods. Variables with statistical differences would be included in stepwise logistic regression analysis to determine independent parameters, by which the combined model was also established. And the receiver operating characteristic curve (ROC) were used to evaluate the prediction performance of histogram parameters and the combined model.

RESULTS

ADC, Dslow, Dk histogram metrics were significantly lower in the responders group than in the non-responders group, while the histogram parameters of f were significantly higher in the responders group than in the non-responders group (all P < 0.05). The mean value of each parameter was better than or equivalent to other histogram metrics, where the mean value of f obtained from whole tumor and single slice both had the highest AUC (AUC = 0.886 and 0.812, respectively) compared to other single parameters. The combined model improved the diagnostic efficiency with an AUC of 0.968 (whole tumor) and 0.893 (single slice), respectively.

CONCLUSIONS

Whole tumor volume ROI demonstrated better diagnostic ability than single slice ROI analysis, which indicated whole tumor histogram analysis of IVIM and DKI hold greater potential than single slice ROI analysis to be a promising tool of predicting therapeutic response to chemoimmunotherapy in advanced NSCLC at initial state.

摘要

背景

迫切需要找到一种可靠且有效的成像方法来评估晚期非小细胞肺癌(NSCLC)免疫化疗的治疗效果。本研究旨在探讨不同感兴趣区(ROI)选择方法下基于体素内不相干运动(IVIM)和扩散峰度成像(DKI)直方图分析的能力,以预测晚期 NSCLC 患者接受化疗免疫治疗的反应。

方法

本研究纳入了 72 名接受化疗免疫治疗的 III 或 IV 期 NSCLC 患者。在治疗前进行了 IVIM 和 DKI 检查。根据实体瘤反应评估标准 1.1,将患者分为反应者组和非反应者组。采用全肿瘤体积 ROI 和单层面 ROI 分析方法,测量 ADC、Dslow、Dfast、f、Dk 和 K 的直方图参数。将具有统计学差异的变量纳入逐步逻辑回归分析,以确定独立参数,并建立联合模型。通过受试者工作特征曲线(ROC)评估直方图参数和联合模型的预测性能。

结果

反应者组的 ADC、Dslow、Dk 直方图指标明显低于非反应者组,而 f 的直方图参数明显高于非反应者组(均 P < 0.05)。各参数的平均值优于或等同于其他直方图指标,其中全肿瘤和单层面的 f 平均值获得的 AUC 最高(分别为 0.886 和 0.812)。与其他单参数相比,联合模型的 AUC 分别为 0.968(全肿瘤)和 0.893(单层面),提高了诊断效率。

结论

全肿瘤体积 ROI 比单层面 ROI 分析具有更好的诊断能力,这表明 IVIM 和 DKI 的全肿瘤直方图分析比单层面 ROI 分析更有潜力成为预测晚期 NSCLC 初始状态下化疗免疫治疗反应的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b0c/11167789/c6200186c4bf/40644_2024_713_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验