文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于聚乙烯醇、纳米纤维素晶体和银纳米颗粒的三元生物复合膜用于食品包装的制备

Fabrication of a ternary biocomposite film based on polyvinyl alcohol, cellulose nanocrystals, and silver nanoparticles for food packaging.

作者信息

Nguyen Long Hoang, Tran Trang Thanh, Nguyen Thanh-My Thi, Le Hieu Van, Nguyen Kim-Phung Le, Vu An Nang

机构信息

Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam

Vietnam National University Ho Chi Minh City 700000 Vietnam.

出版信息

RSC Adv. 2024 Jun 11;14(26):18671-18684. doi: 10.1039/d4ra02085e. eCollection 2024 Jun 6.


DOI:10.1039/d4ra02085e
PMID:38863813
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11165488/
Abstract

Silver nanoparticles (AgNPs) were loaded on deprotonated cellulose nanocrystals (CNCd) and incorporated into polyvinyl alcohol (PVA) to develop novel active food packaging films. The AgNPs were fabricated using the liquid phase chemical reduction method using the sodium borohydride reductant of AgNO. The analysis using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Ultraviolet-visible spectroscopy (UV-Vis) showed that the CNCd surface had a homogeneous distribution of AgNPs with a diameter of about 100 nm. Additionally, CNCd/Ag was successfully incorporated into the PVA film. The developed PVA/CNCd/Ag film showed significantly improved mechanical properties, thermal stability, and UV barrier properties compared to a neat PVA film. The PVA/CNCd/Ag composite film could significantly preserve bananas for 14 days, preventing deterioration and allowing extended storage periods. This composite film generally shows promise in food packaging and prolongs food's shelf life.

摘要

将银纳米颗粒(AgNPs)负载在去质子化的纤维素纳米晶体(CNCd)上,并将其掺入聚乙烯醇(PVA)中,以开发新型活性食品包装薄膜。使用硝酸银的硼氢化钠还原剂通过液相化学还原法制备AgNPs。通过X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)、差示扫描量热法(DSC)和紫外可见光谱(UV-Vis)分析表明,CNCd表面AgNPs分布均匀,直径约为100 nm。此外,CNCd/Ag成功掺入PVA薄膜中。与纯PVA薄膜相比,所制备的PVA/CNCd/Ag薄膜的机械性能、热稳定性和紫外线阻隔性能均有显著提高。PVA/CNCd/Ag复合薄膜可以显著地将香蕉保存14天,防止其变质并延长储存期。这种复合薄膜在食品包装方面总体上显示出前景,并能延长食品的保质期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/376541929e52/d4ra02085e-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/ed8c7ce58279/d4ra02085e-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/a74cdc5fc2bc/d4ra02085e-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/f715cd5d83be/d4ra02085e-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/823ca6c1f79f/d4ra02085e-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/89dd89b6a71a/d4ra02085e-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/bb3337d49e8b/d4ra02085e-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/94b42a2ba758/d4ra02085e-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/4a266f519aec/d4ra02085e-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/528cf7dc65a4/d4ra02085e-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/1e4a246881a4/d4ra02085e-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/ddfef95ef41f/d4ra02085e-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/376541929e52/d4ra02085e-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/ed8c7ce58279/d4ra02085e-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/a74cdc5fc2bc/d4ra02085e-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/f715cd5d83be/d4ra02085e-s1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/823ca6c1f79f/d4ra02085e-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/89dd89b6a71a/d4ra02085e-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/bb3337d49e8b/d4ra02085e-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/94b42a2ba758/d4ra02085e-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/4a266f519aec/d4ra02085e-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/528cf7dc65a4/d4ra02085e-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/1e4a246881a4/d4ra02085e-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/ddfef95ef41f/d4ra02085e-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/891b/11165488/376541929e52/d4ra02085e-f11.jpg

相似文献

[1]
Fabrication of a ternary biocomposite film based on polyvinyl alcohol, cellulose nanocrystals, and silver nanoparticles for food packaging.

RSC Adv. 2024-6-11

[2]
Antibacterial, antioxidant and fruit packaging ability of biochar-based silver nanoparticles-polyvinyl alcohol-chitosan composite film.

Int J Biol Macromol. 2024-1

[3]
Preparation and characterization of functionalized chitosan/polyvinyl alcohol composite films incorporated with cinnamon essential oil as an active packaging material.

Int J Biol Macromol. 2023-4-30

[4]
Novel chitosan-based smart bio-nanocomposite films incorporating TiO nanoparticles for white bread preservation.

Int J Biol Macromol. 2024-5

[5]
Chitosan-based films blended with moringa leaves and MgO nanoparticles for application in active food packaging.

Int J Biol Macromol. 2023-12-31

[6]
Ultraviolet blocking ability, antioxidant and antibacterial properties of newly prepared polyvinyl alcohol-nanocellulose‑silver nanoparticles-ChunJian peel extract composite film.

Int J Biol Macromol. 2023-12-1

[7]
Polyvinyl alcohol/cellulose nanocrystals/alkyl ketene dimer nanocomposite as a novel biodegradable food packing material.

Int J Biol Macromol. 2022-5-15

[8]
In situ approach induced growth of highly monodispersed Ag nanoparticles within free standing PVA/PVP films.

Spectrochim Acta A Mol Biomol Spectrosc. 2012-4-6

[9]
Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabbage anthocyanins for visually monitoring shrimp freshness.

Int J Biol Macromol. 2022-10-1

[10]
Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.

Mater Sci Eng C Mater Biol Appl. 2016-12-1

引用本文的文献

[1]
Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging.

Foods. 2024-12-11

本文引用的文献

[1]
Synthesis of carboxylated cellulose nanocrystal/ZnO nanohybrids using Oxytenanthera abyssinica cellulose and zinc nitrate hexahydrate for radical scavenging, photocatalytic, and antibacterial activities.

Int J Biol Macromol. 2024-5

[2]
Efficient antibacterial and dye adsorption by novel fish scale silver biochar composite gel.

Int J Biol Macromol. 2023-9-1

[3]
Preparation of a biobased polyelectrolyte complex from chitosan and sodium carboxymethyl cellulose and its antibacterial characteristics.

Int J Biol Macromol. 2023-2-1

[4]
Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand.

Polymers (Basel). 2022-4-29

[5]
Stems a New Sustainable Source for Cellulosic Materials: Production and Characterization of Cellulose Microfibers and Nanocrystals.

Waste Biomass Valorization. 2022

[6]
Benchmarking Cellulose Nanocrystals Part II: New Industrially Produced Materials.

Langmuir. 2021-7-20

[7]
Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications.

Compr Rev Food Sci Food Saf. 2021-5

[8]
Preparation of Cellulose Nanofibers from Bagasse by Phosphoric Acid and Hydrogen Peroxide Enables Fibrillation via a Swelling, Hydrolysis, and Oxidation Cooperative Mechanism.

Nanomaterials (Basel). 2020-11-10

[9]
Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials.

Materials (Basel). 2020-11-6

[10]
Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers.

Carbohydr Polym. 2021-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索