Frederiksen Henriette Reventlow, Glantz Alexandra, Vøls Kåre Kryger, Skov Søren, Tveden-Nyborg Pernille, Freude Kristine, Doehn Ulrik
Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Cell Therapy Research, Novo Nordisk A/S, Maaloev, Denmark.
Front Genome Ed. 2024 May 28;6:1403395. doi: 10.3389/fgeed.2024.1403395. eCollection 2024.
Although current stem cell therapies exhibit promising potential, the extended process of employing autologous cells and the necessity for donor-host matching to avert the rejection of transplanted cells significantly limit the widespread applicability of these treatments. It would be highly advantageous to generate a pluripotent universal donor stem cell line that is immune-evasive and, therefore, not restricted by the individual's immune system, enabling unlimited application within cell replacement therapies. Before such immune-evasive stem cells can be moved forward to clinical trials, testing via transplantation experiments in immune-competent animals would be a favorable approach preceding preclinical testing. By using human stem cells in immune competent animals, results will be more translatable to a clinical setting, as no parts of the immune system have been altered, although in a xenogeneic setting. In this way, immune evasiveness, cell survival, and unwanted proliferative effects can be assessed before clinical trials in humans. The current study presents the generation and characterization of three human embryonic stem cell lines (hESCs) for xenogeneic transplantation in immune-competent mice. The major histocompatibility complexes I- and II-encoding genes, B2M and CIITA, have been deleted from the hESCs using CRISPR-Cas9-targeted gene replacement strategies and knockout. B2M was knocked out by the insertion of murine CD47. Human-secreted embryonic alkaline phosphatase (hSEAP) was inserted in a safe harbor site to track cells The edited hESCs maintained their pluripotency, karyotypic normality, and stable expression of murine CD47 and hSEAP . transplantation of hESCs into immune-competent BALB/c mice was successfully monitored by measuring hSEAP in blood samples. Nevertheless, transplantation of immune-evasive hESCs resulted in complete rejection within 11 days, with clear immune infiltration of T-cells on day 8. Our results reveal that knockout of B2M and CIITA together with species-specific expression of CD47 are insufficient to prevent rejection in an immune-competent and xenogeneic context.
尽管目前的干细胞疗法展现出了令人期待的潜力,但使用自体细胞的漫长过程以及供体与宿主匹配以避免移植细胞被排斥的必要性,显著限制了这些治疗方法的广泛应用。生成一种具有免疫逃避能力、因此不受个体免疫系统限制的多能通用供体干细胞系,从而能够在细胞替代疗法中无限应用,将具有极大的优势。在这种免疫逃避型干细胞能够推进到临床试验之前,在免疫健全的动物中通过移植实验进行测试将是临床前测试之前的一种有利方法。通过在免疫健全的动物中使用人类干细胞,结果将更易于转化到临床环境中,因为尽管是在异种环境下,但免疫系统的任何部分都未被改变。通过这种方式,可以在人体临床试验之前评估免疫逃避能力、细胞存活情况以及不必要的增殖效应。当前的研究展示了用于在免疫健全的小鼠中进行异种移植的三个人类胚胎干细胞系(hESC)的生成和特性。使用CRISPR-Cas9靶向基因替换策略和基因敲除技术,从hESC中删除了主要组织相容性复合体I类和II类编码基因B2M和CIITA。通过插入小鼠CD47敲除B2M。将人类分泌型胚胎碱性磷酸酶(hSEAP)插入一个安全位点以追踪细胞。经过编辑的hESC保持了它们的多能性、核型正常以及小鼠CD47和hSEAP的稳定表达。通过测量血样中的hSEAP,成功监测了hESC向免疫健全的BALB/c小鼠的移植情况。然而,免疫逃避型hESC的移植在第11天内导致了完全排斥,在第8天出现了明显的T细胞免疫浸润。我们的结果表明,在免疫健全的异种环境中,敲除B2M和CIITA以及CD47的物种特异性表达不足以防止排斥反应。