IFP Energies nouvelles, Rueil-Malmaison, France.
Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0028224. doi: 10.1128/aem.00282-24. Epub 2024 Jun 12.
is a solventogenic, anaerobic, gram-positive bacterium that is commonly considered the model organism for studying acetone-butanol-ethanol fermentation. The need to produce these chemicals sustainably and with a minimal impact on the environment has revived the interest in research on this bacterium. The recent development of efficient genetic tools allows to better understand the physiology of this micro-organism, aiming at improving its fermentation capacities. Knowledge about gene essentiality would guide the future genetic editing strategies and support the understanding of crucial cellular functions in this bacterium. In this work, we applied a transposon insertion site sequencing method to generate large mutant libraries containing millions of independent mutants that allowed us to identify a core group of 418 essential genes needed for development. Future research on this significant biocatalyst will be guided by the data provided in this work, which will serve as a valuable resource for the community.
is a leading candidate to synthesize valuable compounds like three and four carbons alcohols. Its ability to convert carbohydrates into a mixture of acetone, butanol, and ethanol as well as other chemicals of interest upon genetic engineering makes it an advantageous organism for the valorization of lignocellulose-derived sugar mixtures. Since, genetic optimization depends on the fundamental insights supplied by accurate gene function assignment, gene essentiality analysis is of great interest as it can shed light on the function of many genes whose functions are still to be confirmed. The data obtained in this study will be of great value for the research community aiming to develop as a platform organism for the production of chemicals of interest.
是一种产溶剂的、厌氧的、革兰氏阳性细菌,通常被认为是研究丙酮丁醇乙醇发酵的模式生物。需要可持续地生产这些化学品,并且对环境的影响最小,这重新激发了人们对该细菌的研究兴趣。最近开发的高效遗传工具允许更好地了解该微生物的生理学,旨在提高其发酵能力。关于基因必需性的知识将指导未来的遗传编辑策略,并支持理解该细菌中关键的细胞功能。在这项工作中,我们应用转座子插入位点测序方法生成了包含数百万个独立突变体的大型突变体文库,这使我们能够鉴定出 418 个必需基因,这些基因对于发育是必需的。未来对这个重要生物催化剂的研究将以这项工作提供的数据为指导,这些数据将成为该领域的宝贵资源。
是合成有价值的化合物(如三碳和四碳醇)的候选者。它能够将碳水化合物转化为丙酮、丁醇和乙醇的混合物以及其他经过基因工程改造的感兴趣的化学品,这使它成为利用木质纤维素衍生糖混合物的有利生物体。由于遗传优化取决于通过准确的基因功能分配提供的基本见解,因此基因必需性分析非常重要,因为它可以阐明许多功能仍待确认的基因的功能。这项研究获得的数据对于旨在将 开发为生产感兴趣的化学品的平台生物的研究界将具有巨大的价值。