Petrisková Lívia, Kodedová Marie, Balážová Mária, Sychrová Hana, Valachovič Martin
Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
Biochim Biophys Acta Mol Cell Biol Lipids. 2024 Oct;1869(7):159523. doi: 10.1016/j.bbalip.2024.159523. Epub 2024 Jun 11.
The effectivity of utilization of exogenous sterols in the yeast Saccharomyces cerevisiae exposed to hypoxic stress is dependent on the sterol structure. The highly imported sterols include animal cholesterol or plant sitosterol, while ergosterol, typical of yeasts, is imported to a lesser extent. An elevated utilization of non-yeast sterols is associated with their high esterification and relocalization to lipid droplets (LDs). Here we present data showing that LDs and sterol esterification play a critical role in the regulation of the accumulation of non-yeast sterols in membranes. Failure to form LDs during anaerobic growth in media supplemented with cholesterol or sitosterol resulted in an extremely long lag phase, in contrast to normal growth in media with ergosterol or plant stigmasterol. Moreover, in hem1∆, which mimics anaerobiosis, neither cholesterol nor sitosterol supported the growth in an LD-less background. The incorporation of non-ergosterol sterols into the membranes affected fundamental membrane characteristics such as relative membrane potential, permeability, tolerance to osmotic stress and the formation of membrane domains. Our findings reveal that LDs assume an important role in scenarios wherein cells are dependent on the utilization of exogenous lipids, particularly under anoxia. Given the diverse lipid structures present in yeast niches, LDs fulfil a protective role, mitigating the risk of excessive accumulation of potentially toxic steroids and fatty acids in the membranes. Finally, we present a novel function for sterols in a model eukaryotic cell - alleviation of the lipotoxicity of unsaturated fatty acids.
暴露于低氧胁迫下的酿酒酵母对外源甾醇的利用效率取决于甾醇结构。高度易导入的甾醇包括动物胆固醇或植物甾醇,而酵母特有的麦角甾醇导入程度较低。非酵母甾醇的高利用率与其高酯化作用以及重新定位到脂滴(LDs)有关。在此,我们展示的数据表明,脂滴和甾醇酯化在调节非酵母甾醇在膜中的积累方面起着关键作用。在添加胆固醇或甾醇的培养基中厌氧生长期间未能形成脂滴,导致了极长的滞后期,这与在含有麦角甾醇或植物豆甾醇的培养基中的正常生长形成对比。此外,在模拟无氧状态的hem1∆中,在无脂滴背景下,胆固醇和甾醇均无法支持生长。将非麦角甾醇甾醇掺入膜中会影响基本的膜特性,如相对膜电位、通透性、对渗透胁迫的耐受性以及膜结构域的形成。我们的研究结果表明,脂滴在细胞依赖外源脂质利用的情况下,尤其是在缺氧条件下,发挥着重要作用。鉴于酵母生态位中存在多种脂质结构,脂滴起到了保护作用,减轻了膜中潜在有毒类固醇和脂肪酸过度积累的风险。最后,我们提出了甾醇在模型真核细胞中的一种新功能——减轻不饱和脂肪酸的脂毒性。