Fabbrizi Maria Rita, Doggett Thomas J, Hughes Jonathan R, Melia Emma, Dufficy Elizabeth R, Hill Rhianna M, Goula Amalia, Phoenix Ben, Parsons Jason L
Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK.
Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
Cell Death Discov. 2024 Jun 12;10(1):282. doi: 10.1038/s41420-024-02059-3.
Ionising radiation (IR) is widely used in cancer treatment, including for head and neck squamous cell carcinoma (HNSCC), where it induces significant DNA damage leading ultimately to tumour cell death. Among these lesions, DNA double strand breaks (DSBs) are the most threatening lesion to cell survival. The two main repair mechanisms that detect and repair DSBs are non-homologous end joining (NHEJ) and homologous recombination (HR). Among these pathways, the protein kinases ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR) and the DNA dependent protein kinase catalytic subunit (DNA-Pkcs) play key roles in the sensing of the DSB and subsequent coordination of the downstream repair events. Consequently, targeting these kinases with potent and specific inhibitors is considered an approach to enhance the radiosensitivity of tumour cells. Here, we have investigated the impact of inhibition of ATM, ATR and DNA-Pkcs on the survival and growth of six radioresistant HPV-negative HNSCC cell lines in combination with either X-ray irradiation or proton beam therapy, and confirmed the mechanistic pathway leading to cell radiosensitisation. Using inhibitors targeting ATM (AZD1390), ATR (AZD6738) and DNA-Pkcs (AZD7648), we observed that this led to significantly decreased clonogenic survival of HNSCC cell lines following both X-ray and proton irradiation. Radiosensitisation of HNSCC cells grown as 3D spheroids was also observed, particularly following ATM and DNA-Pkcs inhibition. We confirmed that the inhibitors in combination with X-rays and protons led to DSB persistence, and increased micronuclei formation. Cumulatively, our data suggest that targeting DSB repair, particularly via ATM and DNA-Pkcs inhibition, can exacerbate the impact of ionising radiation in sensitising HNSCC cell models.
电离辐射(IR)广泛应用于癌症治疗,包括头颈鳞状细胞癌(HNSCC),在该癌症治疗中,电离辐射会导致严重的DNA损伤,最终导致肿瘤细胞死亡。在这些损伤中,DNA双链断裂(DSB)是对细胞存活最具威胁性的损伤。检测和修复DSB的两种主要修复机制是非同源末端连接(NHEJ)和同源重组(HR)。在这些途径中,蛋白激酶共济失调毛细血管扩张突变(ATM)、共济失调毛细血管扩张和Rad3相关(ATR)以及DNA依赖性蛋白激酶催化亚基(DNA-Pkcs)在检测DSB以及随后协调下游修复事件中起关键作用。因此,用强效和特异性抑制剂靶向这些激酶被认为是提高肿瘤细胞放射敏感性的一种方法。在这里,我们研究了抑制ATM、ATR和DNA-Pkcs对六种放射抗性HPV阴性HNSCC细胞系存活和生长的影响,并结合X射线照射或质子束疗法,证实了导致细胞放射增敏的机制途径。使用靶向ATM(AZD1390)、ATR(AZD6738)和DNA-Pkcs(AZD7648)的抑制剂,我们观察到这导致X射线和质子照射后HNSCC细胞系的克隆形成存活率显著降低。还观察到以3D球体形式生长的HNSCC细胞的放射增敏作用,特别是在ATM和DNA-Pkcs抑制后。我们证实,抑制剂与X射线和质子联合使用会导致DSB持续存在,并增加微核形成。总的来说,我们的数据表明,靶向DSB修复,特别是通过抑制ATM和DNA-Pkcs,可以增强电离辐射对HNSCC细胞模型的增敏作用。