Environmental Ergonomics Research Centre, School of Design and Creative Arts, Loughborough University, Loughborough, United Kingdom.
Heat and Health Research Incubator, University of Sydney, Sydney, New South Wales, Australia.
J Appl Physiol (1985). 2024 Aug 1;137(2):312-328. doi: 10.1152/japplphysiol.00613.2023. Epub 2024 Jun 13.
The purpose of this study was to investigate which climate/heat indices perform best in predicting heat-induced loss of physical work capacity (PWC). Integrating data from earlier studies, data from 982 exposures (75 conditions) exercising at a fixed cardiovascular load of 130 beats·min, in varying temperatures (15-50°C), humidities (20-80%), solar radiation (0-800 W·m), wind (0.2-3.5 m·s), and two clothing levels, were used to model the predictive power of ambient temperature, universal thermal climate index (UTCI), wet bulb globe temperature (WBGT), modified physiologically equivalent temperature (mPET), heat index, apparent temperature (AT), and wet bulb temperature (T) for the calculation of PWC, skin temperature (T) and core-to-skin temperature gradient, and thermal perception (thermal sensation vote, TSV) in the heat. , RMSE, and Akaike information criterion were used indicating model performance. Indices not including wind/radiation in their calculation (T, heat index, AT, and T) struggled to provide consistent predictions across variables. For PWC and TSV, UTCI and WBGT had the highest predictive power. For T, and core-to-skin temperature gradient, the physiological models UTCI and mPET worked best in seminude conditions, but clothed, AT, WBGT, and UTCI worked best. For all index predictions, T, vapor pressure, and T were shown to be the worst heat strain predictors. Although UTCI and WBGT had similar model performance using the full dataset, WBGT did not work appropriately in windy, hot-dry, conditions where WBGT predicted lower strain due to wind, whereas the empirical data, UTCI and mPET indicated that wind in fact increased the overall level of thermal strain. The findings of the current study highlight the advantages of using a physiological model-based index like UTCI when evaluating heat stress in dynamic thermal environments. There is an urgent need to determine the optimal heat stress metric when forecasting the impact of heat stress on human performance, physiological stress, and perception. We analyzed a wealth of laboratory data, simulating heart rate (HR)-paced work with wide variations in air temperature, humidity, wind speed, solar radiation, and clothing. We conclude that the universal thermal climate index (UTCI) [followed by wet-bulb globe temperature (WBGT)] is the optimal heat index to reliably predict reductions in performance, and elevations in physiological and perceptual stress.
本研究旨在探讨哪种气候/热量指数在预测热致体力工作能力丧失方面表现最佳。综合早期研究的数据,使用 982 个暴露(75 个条件)的数据,这些暴露在固定的心血管负荷 130 次/分钟下,在不同的温度(15-50°C)、湿度(20-80%)、太阳辐射(0-800 W·m)、风速(0.2-3.5 m·s)和两种服装水平下进行运动,用于模拟环境温度、通用热气候指数(UTCI)、湿球 globe 温度(WBGT)、修正生理等效温度(mPET)、热指数、表观温度(AT)和湿球温度(T)对体力工作能力(PWC)、皮肤温度(T)和核心到皮肤温度梯度以及热感知(热感觉投票,TSV)的预测能力。使用均方根误差(RMSE)和 Akaike 信息准则来表示模型性能。在计算中不包括风/辐射的指数(T、热指数、AT 和 T)在跨变量时难以提供一致的预测。对于 PWC 和 TSV,UTCI 和 WBGT 具有最高的预测能力。对于 T 和核心到皮肤温度梯度,生理模型 UTCI 和 mPET 在半裸条件下效果最佳,但穿着衣服时,AT、WBGT 和 UTCI 效果最佳。对于所有指数预测,T、蒸汽压和 T 是最差的热应变预测因子。尽管使用全数据集时 UTCI 和 WBGT 的模型性能相似,但在有风、炎热干燥的条件下,WBGT 由于风的作用预测出较低的应变,而实际数据 UTCI 和 mPET 表明风实际上增加了整体热应变水平。本研究的结果强调了在动态热环境中评估热应激时使用基于生理模型的指数(如 UTCI)的优势。当预测热应激对人体性能、生理应激和感知的影响时,迫切需要确定最佳的热应激指标。我们分析了大量的实验室数据,模拟了心率(HR)起搏工作,空气温度、湿度、风速、太阳辐射和服装有很大的变化。我们得出的结论是,通用热气候指数(UTCI)[其次是湿球 globe 温度(WBGT)]是可靠预测性能下降和生理和感知压力升高的最佳热指数。