文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于工业水净化的超支化聚合物膜

Hyperbranched polymeric membranes for industrial water purification.

作者信息

Taha AmanyE, Mowafi Salwa, Hamouda Asmaa S

机构信息

Environmental Sciences And Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt.

Proteinic and Man-made Fibers Department, Textile Research and Technology Institute, National Research Centre, 12622-Dokki, Giza, Egypt.

出版信息

Heliyon. 2024 May 27;10(11):e31318. doi: 10.1016/j.heliyon.2024.e31318. eCollection 2024 Jun 15.


DOI:10.1016/j.heliyon.2024.e31318
PMID:38868020
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11167269/
Abstract

This work aims at the preparation and characterization of dual-layer (DL) nano-fibrous mat (NFM) of hydrophobic and mechanical stable polyacrylonitrile (PAN) nano-fibers (NFs), as a supporter, and polyamide 6 (PA)/chitosan (Ch) NFs as a top hydrophilic coating layer. PAN and PA fibers, as residual wastes from textile processes, were collected and dissolved in their proper solvents. PAN was electro-spuned under certain conditions of electro-spinning (voltage, flow rate, and distance between spinneret and collector) to obtain PAN-NFM. Different ratios of PA/Ch composite were prepared and then electro-spun above the PAN-NFM that was previously prepared to obtain hydrophobic/hydrophilic functional dual-layer nano-fibrous membrane (DLNFM). The efficiency of the prepared DLNFM for capturing dye residues and heavy metals from wastewater was investigated. The viscosities of the prepared composite solutions were measured. The prepared dual-layer nano-fiber membranes (DLNFMs) were chemically and physically characterized by Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffraction, and thermogravimetric analyzer. The potential of the prepared mats for the adsorption of some heavy metal ions, i.e., Cu, Cr, and Pb cations in addition to dyes from wastewater was evaluated. The effect of using different concentrations of PA/Ch composite as well as the thickness of the obtained DLNFM on the filtration efficiency was studied. The results of this study show the success of functional DLNFM in dye and heavy metal removal. The maximum removal efficiency of acid dyes was reached to 73.4 % and of reactive dye was approximately 61 % for PAN/PA-1.25%Ch DLNFM after 3 days at room temperature. The removal efficiency percent of heavy metal ions reached to 54 % by DLNFM. Additionally, the results showed that 0.08 mm is the ideal thickness for maximum absorption capacity. This value is correlated with the membrane's highest Ch percentage, which is (PAN/PA-1.25%Ch). Furthermore, the results demonstrate that the presence of the Ch polymer strengthened the produced bi-layered membrane to achieve the highest thermal stability when compared to the other nano-fibrous membranes (NFMs), with the breakdown temperature of the Ch functionalized dual-layer membranes (DLMs) reaching approximately 617 °C and a maximum weight loss of 60 %.

摘要

这项工作旨在制备并表征由疏水且机械稳定的聚丙烯腈(PAN)纳米纤维(NFs)作为支撑层、聚酰胺6(PA)/壳聚糖(Ch)纳米纤维作为顶部亲水性涂层的双层(DL)纳米纤维毡(NFM)。收集纺织过程中产生的残余废料PAN和PA纤维,并将它们溶解在合适的溶剂中。在特定的静电纺丝条件(电压、流速以及喷丝头与收集器之间的距离)下对PAN进行静电纺丝,以获得PAN-NFM。制备不同比例的PA/Ch复合材料,然后在先前制备的PAN-NFM上方进行静电纺丝,从而获得疏水/亲水功能双层纳米纤维膜(DLNFM)。研究了所制备的DLNFM从废水中捕获染料残留和重金属的效率。测量了所制备的复合溶液的粘度。通过傅里叶变换红外光谱、扫描电子显微镜、X射线衍射和热重分析仪对所制备的双层纳米纤维膜(DLNFM)进行化学和物理表征。评估了所制备的毡对一些重金属离子(即Cu、Cr和Pb阳离子)以及废水中染料的吸附潜力。研究了使用不同浓度的PA/Ch复合材料以及所获得的DLNFM的厚度对过滤效率的影响。本研究结果表明功能性DLNFM在去除染料和重金属方面取得了成功。对于PAN/PA-1.25%Ch DLNFM,在室温下放置3天后,酸性染料的最大去除效率达到73.4%,活性染料的去除效率约为61%。DLNFM对重金属离子的去除效率达到54%。此外,结果表明0.08毫米是实现最大吸附容量的理想厚度。该值与膜中最高的Ch百分比相关,即(PAN/PA-1.25%Ch)。此外,结果表明,与其他纳米纤维膜(NFM)相比,Ch聚合物的存在增强了所制备的双层膜,使其具有最高的热稳定性,Ch功能化双层膜(DLM)的分解温度达到约617℃,最大失重为60%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/3daa0a5e73cb/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/5240ef9e62a8/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/d9929db6bb4a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/5af2297fb8c4/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/abcfafa929a1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/3a0c58f45917/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/208cb139d11a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/ac9f976a26a2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/3f30f4de37fa/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/c279b21ea533/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/96ebee9228a7/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/a013d1cb3a5a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/db4b8097a751/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/8503ac5c4e49/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/20568fe0d347/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/da7f61ef65d1/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/158cf0a3545b/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/3daa0a5e73cb/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/5240ef9e62a8/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/d9929db6bb4a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/5af2297fb8c4/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/abcfafa929a1/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/3a0c58f45917/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/208cb139d11a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/ac9f976a26a2/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/3f30f4de37fa/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/c279b21ea533/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/96ebee9228a7/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/a013d1cb3a5a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/db4b8097a751/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/8503ac5c4e49/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/20568fe0d347/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/da7f61ef65d1/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/158cf0a3545b/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c9/11167269/3daa0a5e73cb/gr16.jpg

相似文献

[1]
Hyperbranched polymeric membranes for industrial water purification.

Heliyon. 2024-5-27

[2]
Preparation of non-spherical nano-FeO and its effect on thermal decomposition of AP and combustion performance of composite fuels.

Phys Chem Chem Phys. 2025-6-18

[3]
Influence of crosslinking metal type on the characteristics and simultaneous adsorption performance of alginate aerogel beads for basic red 18 dye and copper ions.

Int J Biol Macromol. 2025-7

[4]
Aural toilet (ear cleaning) for chronic suppurative otitis media.

Cochrane Database Syst Rev. 2025-6-9

[5]
Surveillance for Violent Deaths - National Violent Death Reporting System, 50 States, the District of Columbia, and Puerto Rico, 2022.

MMWR Surveill Summ. 2025-6-12

[6]
Absorbent products for moderate-heavy urinary and/or faecal incontinence in women and men.

Cochrane Database Syst Rev. 2008-10-8

[7]
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.

Elife. 2025-5-23

[8]
Prognostic factors for return to work in breast cancer survivors.

Cochrane Database Syst Rev. 2025-5-7

[9]
CALCULATION OF TOTAL ENERGY EXPENDITURE IN ADULTS WITH CROHN'S DISEASE BY INDIRECT CALORIMETRY AND SIMPLE WEIGHT-BASED EQUATIONS: A COMPARATIVE STUDY.

Arq Gastroenterol. 2025-6-16

[10]
Interventions for fertility preservation in women with cancer undergoing chemotherapy.

Cochrane Database Syst Rev. 2025-6-19

本文引用的文献

[1]
Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals.

Int J Biol Macromol. 2023-6-1

[2]
Chitosan/polyvinylpyrrolidone/polyvinyl alcohol/carbon nanotubes dual layers nanofibrous membrane constructed by electrospinning-electrospray for water purification.

Carbohydr Polym. 2022-10-15

[3]
Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal.

Int J Biol Macromol. 2022-6-15

[4]
Preparation and characterization of graphitic carbon nitrides/polyvinylidene fluoride adsorptive membrane modified with chitosan for Rhodamine B dye removal from water: Adsorption isotherms, kinetics and thermodynamics.

Carbohydr Polym. 2022-2-1

[5]
Study of the Filtration Performance of Multilayer and Multiscale Fibrous Structures.

Materials (Basel). 2021-11-24

[6]
Post Processing Strategies for the Enhancement of Mechanical Properties of ENMs (Electrospun Nanofibrous Membranes): A Review.

Membranes (Basel). 2021-1-5

[7]
Facile synthesis of chitosan-based acid-resistant composite films for efficient selective adsorption properties towards anionic dyes.

Carbohydr Polym. 2021-2-15

[8]
Synthesis, characterization and properties of novel polyamides derived from 4 4' bis(4-carboxy methylene) biphenyl and various diamines.

Des Monomers Polym. 2020-9-30

[9]
Impact of Additives on Mechanical Properties of Supramolecular Electrospun Scaffolds.

ACS Appl Polym Mater. 2020-9-11

[10]
An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration.

Bioact Mater. 2020-8-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索