使用巨正则密度泛函理论和原位衰减全反射表面增强红外吸收光谱对金属态和氧化态锡上的电化学CO还原反应的见解。

Insights into Electrochemical CO Reduction on Metallic and Oxidized Tin Using Grand-Canonical DFT and In Situ ATR-SEIRA Spectroscopy.

作者信息

Whittaker Todd N, Fishler Yuval, Clary Jacob M, Brimley Paige, Holewinski Adam, Musgrave Charles B, Farberow Carrie A, Smith Wilson A, Vigil-Fowler Derek

机构信息

Department of Chemical and Biological Engineering, Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States.

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

出版信息

ACS Catal. 2024 May 14;14(11):8353-8365. doi: 10.1021/acscatal.4c01290. eCollection 2024 Jun 7.

Abstract

Electrochemical CO reduction (COR) to formate is an attractive carbon emissions mitigation strategy due to the existing market and attractive price for formic acid. Tin is an effective electrocatalyst for COR to formate, but the underlying reaction mechanism and whether the active phase of tin is metallic or oxidized during reduction is openly debated. In this report, we used grand-canonical density functional theory and attenuated total reflection surface-enhanced infrared absorption spectroscopy to identify differences in the vibrational signatures of surface species during COR on fully metallic and oxidized tin surfaces. Our results show that COR is feasible on both metallic and oxidized tin. We propose that the key difference between each surface termination is that COR catalyzed by metallic tin surfaces is limited by the electrochemical activation of CO, whereas COR catalyzed by oxidized tin surfaces is limited by the slow reductive desorption of formate. While the exact degree of oxidation of tin surfaces during COR is unlikely to be either fully metallic or fully oxidized, this study highlights the limiting behavior of these two surfaces and lays out the key features of each that our results predict will promote rapid COR catalysis. Additionally, we highlight the power of integrating high-fidelity quantum mechanical modeling and spectroscopic measurements to elucidate intricate electrocatalytic reaction pathways.

摘要

电化学将CO还原为甲酸盐是一种颇具吸引力的碳减排策略,这是因为甲酸存在市场需求且价格诱人。锡是将CO还原为甲酸盐的有效电催化剂,但关于其潜在反应机理以及在还原过程中锡的活性相是金属态还是氧化态,目前仍存在公开争议。在本报告中,我们使用巨正则密度泛函理论和衰减全反射表面增强红外吸收光谱,来识别在完全金属态和氧化态锡表面上进行CO还原反应时表面物种振动特征的差异。我们的结果表明,在金属态和氧化态锡表面上CO还原反应都是可行的。我们提出,每种表面终端之间的关键差异在于,金属锡表面催化的CO还原反应受限于CO的电化学活化,而氧化锡表面催化的CO还原反应则受限于甲酸盐缓慢的还原脱附。虽然在CO还原过程中锡表面的确切氧化程度不太可能完全是金属态或完全是氧化态,但本研究突出了这两种表面的限制行为,并阐述了我们的结果预测将促进快速CO还原催化的每种表面的关键特征。此外,我们强调了整合高保真量子力学建模和光谱测量以阐明复杂电催化反应途径的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/438a/11165454/3bd5170b7b8d/cs4c01290_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索