Malhotra Harshit, Dhamale Tushar, Kaur Sukhjeet, Kasarlawar Sravanti T, Phale Prashant S
Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
Microbiol Spectr. 2024 Aug 6;12(8):e0028424. doi: 10.1128/spectrum.00284-24. Epub 2024 Jun 13.
CSV86 displays the unique property of preferential utilization of aromatic compounds over simple carbon sources like glucose and glycerol and their co-metabolism with organic acids. Well-characterized growth conditions, aromatic compound metabolic pathways and their regulation, genome sequence, and advantageous eco-physiological traits (indole acetic acid production, alginate production, fusaric acid resistance, organic sulfur utilization, and siderophore production) make it an ideal host for metabolic engineering. Strain CSV86 was engineered for Carbaryl (1-naphthyl--methylcarbamate) degradation via salicylate-catechol route by expression of a Carbaryl hydrolase (CH) and a 1-naphthol 2-hydroxylase (1NH). Additionally, the engineered strain exhibited faster growth on Carbaryl upon expression of the McbT protein (encoded by the T gene, a part of Carbaryl degradation upper operon of sp. C5pp). Bioinformatic analyses predict McbT to be an outer membrane protein, and Carbaryl-dependent expression suggests its probable role in Carbaryl uptake. Enzyme activity and protein analyses suggested periplasmic localization of CH (carrying transmembrane domain plus signal peptide sequence at the N-terminus) and 1NH, enabling compartmentalization of the pathway. Enzyme activity, whole-cell oxygen uptake, spent media analyses, and qPCR results suggest that the engineered strain preferentially utilizes Carbaryl over glucose. The plasmid-encoded degradation property was stable for 75-90 generations even in the absence of selection pressure (kanamycin or Carbaryl). These results indicate the utility of CSV86 as a potential host for engineering various aromatic compound degradation pathways.IMPORTANCEThe current study describes engineering of Carbaryl metabolic pathway in CSV86. Carbaryl, a naphthalene-derived carbamate pesticide, is known to act as an endocrine disruptor, mutagen, cytotoxin, and carcinogen. Removal of xenobiotics from the environment using bioremediation faces challenges, such as slow degradation rates, instability of the degradation phenotype, and presence of simple carbon sources in the environment. The engineered CSV86-MEC2 overcomes these disadvantages as Carbaryl was degraded preferentially over glucose. Furthermore, the plasmid-borne degradation phenotype is stable, and presence of glucose and organic acids does not repress Carbaryl metabolism in the strain. The study suggests the role of outer membrane protein McbT in Carbaryl transport. This work highlights the suitability of CSV86 as an ideal host for engineering aromatic pollutant degradation pathways.
CSV86表现出独特的特性,即优先利用芳香族化合物而非葡萄糖和甘油等简单碳源,并能与有机酸共同代谢。其生长条件明确、芳香族化合物代谢途径及其调控机制清楚、基因组序列已知,且具有有利的生态生理特性(如吲哚乙酸产生、藻酸盐产生、对镰刀菌酸的抗性、有机硫利用和铁载体产生),使其成为代谢工程的理想宿主。通过表达西维因水解酶(CH)和1-萘酚2-羟化酶(1NH),对菌株CSV86进行工程改造,使其通过水杨酸-儿茶酚途径降解西维因(1-萘基-N-甲基氨基甲酸酯)。此外,在表达McbT蛋白(由T基因编码, C5pp菌西维因降解上游操纵子的一部分)后,工程菌株在西维因上的生长速度更快。生物信息学分析预测McbT是一种外膜蛋白,且西维因依赖性表达表明其可能在西维因摄取中发挥作用。酶活性和蛋白质分析表明CH(在N端带有跨膜结构域加信号肽序列)和1NH定位于周质,使该途径能够进行区室化。酶活性、全细胞氧摄取、发酵液分析和qPCR结果表明,工程菌株优先利用西维因而非葡萄糖。即使在没有选择压力(卡那霉素或西维因)的情况下,质粒编码的降解特性在75 - 90代中仍保持稳定。这些结果表明CSV86作为工程改造各种芳香族化合物降解途径的潜在宿主具有实用性。
重要性
本研究描述了CSV86中西维因代谢途径的工程改造。西维因是一种源自萘的氨基甲酸酯类农药,已知具有内分泌干扰物、诱变剂、细胞毒素和致癌物的作用。利用生物修复从环境中去除外源化合物面临着诸如降解速度慢、降解表型不稳定以及环境中存在简单碳源等挑战。工程改造后的CSV86 - MEC2克服了这些缺点,因为它优先降解西维因而非葡萄糖。此外,质粒携带的降解表型是稳定的,并且葡萄糖和有机酸的存在不会抑制该菌株中西维因的代谢。该研究表明外膜蛋白McbT在西维因转运中的作用。这项工作突出了CSV86作为工程改造芳香族污染物降解途径的理想宿主的适用性。