文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

LncRNA KIFAP3-5:1 inhibits epithelial-mesenchymal transition of renal tubular cell through PRRX1 in diabetic nephropathy.

作者信息

Du Lei, Lu Yinfei, Wang Jingyi, Zheng Yijia, Li Huan, Liu Yunfei, Wu Xiaoling, Zhou Jieling, Wang Lei, He Linlin, Shi Jiasen, Xu Liu, Li Xizhi, Lu Qian, Yin Xiaoxing

机构信息

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.

出版信息

Cell Biol Toxicol. 2024 Jun 13;40(1):47. doi: 10.1007/s10565-024-09874-5.


DOI:10.1007/s10565-024-09874-5
PMID:38869718
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11176233/
Abstract

Long noncoding RNAs play an important role in several pathogenic processes in diabetic nephropathy, but the relationship with epithelial-mesenchymal transition in DN is unclear. Herein, we found that KIFAP3-5:1 expression was significantly down-regulated in DN plasma samples, db/db mouse kidney tissues and high glucose treated renal tubular epithelial cells compared to normal healthy samples and untreated cells. Overexpression of KIFAP3-5:1 improved renal fibrosis in db/db mice and rescued epithelial-mesenchymal transition of high glucose cultured renal tubular epithelial cells. The silence of KIFAP3-5:1 will exacerbate the progression of EMT. Mechanistically, KIFAP3-5:1 was confirmed to directly target to the -488 to -609 element of the PRRX1 promoter and negatively modulate PRRX1 mRNA and protein expressions. Furthermore, rescue assays demonstrated that the knockdown of PRRX1 counteracted the KIFAP3-5:1 low expression-mediated effects on EMT in hRPTECs cultured under high glucose. The plasma KIFAP3-5:1 of DN patients is highly correlated with the severity of renal dysfunction and plays an important role in the prediction model of DN diseases. These findings suggested that KIFAP3-5:1 plays a critical role in regulation of renal EMT and fibrosis through suppress PRRX1, and highlight the clinical potential of KIFAP3-5:1 to assist in the diagnosis of diabetic nephropathy.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/2b449a0b8429/10565_2024_9874_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/e39b41551c62/10565_2024_9874_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/ce17a618f395/10565_2024_9874_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/2aead7666dc7/10565_2024_9874_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/5610bfd1e7dc/10565_2024_9874_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/b9ba1cddde35/10565_2024_9874_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/d00fdcf4a8cf/10565_2024_9874_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/a4dcd3ac75fe/10565_2024_9874_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/2b449a0b8429/10565_2024_9874_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/e39b41551c62/10565_2024_9874_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/ce17a618f395/10565_2024_9874_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/2aead7666dc7/10565_2024_9874_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/5610bfd1e7dc/10565_2024_9874_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/b9ba1cddde35/10565_2024_9874_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/d00fdcf4a8cf/10565_2024_9874_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/a4dcd3ac75fe/10565_2024_9874_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e553/11176233/2b449a0b8429/10565_2024_9874_Fig8_HTML.jpg

相似文献

[1]
LncRNA KIFAP3-5:1 inhibits epithelial-mesenchymal transition of renal tubular cell through PRRX1 in diabetic nephropathy.

Cell Biol Toxicol. 2024-6-13

[2]
Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition.

J Mol Med (Berl). 2015-7

[3]
Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy.

Int J Biochem Cell Biol. 2016-1

[4]
Inactivation of TSC1 promotes epithelial-mesenchymal transition of renal tubular epithelial cells in mouse diabetic nephropathy.

Acta Pharmacol Sin. 2019-6-24

[5]
Sirt1 inhibits renal tubular cell epithelial-mesenchymal transition through YY1 deacetylation in diabetic nephropathy.

Acta Pharmacol Sin. 2021-2

[6]
miR-30b-5p modulate renal epithelial-mesenchymal transition in diabetic nephropathy by directly targeting SNAI1.

Biochem Biophys Res Commun. 2021-1-8

[7]
Protein arginine methyltranferase-1 induces ER stress and epithelial-mesenchymal transition in renal tubular epithelial cells and contributes to diabetic nephropathy.

Biochim Biophys Acta Mol Basis Dis. 2019-6-11

[8]
Targeting mammalian serine/threonine-protein kinase 4 through Yes-associated protein/TEA domain transcription factor-mediated epithelial-mesenchymal transition ameliorates diabetic nephropathy orchestrated renal fibrosis.

Metabolism. 2020-5-3

[9]
LncRNA MALAT1 facilities high glucose induced endothelial to mesenchymal transition and fibrosis via targeting miR-145/ZEB2 axis.

Eur Rev Med Pharmacol Sci. 2019-4

[10]
MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice.

Aging Cell. 2017-4

引用本文的文献

[1]
ChEA-KG: Human Transcription Factor Regulatory Network with a Knowledge Graph Interactive User Interface.

bioRxiv. 2025-8-12

[2]
Stress-Related LncRNAs and Their Roles in Diabetes and Diabetic Complications.

Int J Mol Sci. 2025-2-28

本文引用的文献

[1]
Whole transcriptome analysis reveals that immune infiltration- lncRNAs are related to cellular apoptosis in liver transplantation.

Front Immunol. 2023

[2]
Identification and characterization of non-coding RNA networks in infected macrophages revealing the pathogenesis of F. nucleatum-associated diseases.

BMC Genomics. 2022-12-13

[3]
Identification and validation of an inflammation-related lncRNAs signature for improving outcomes of patients in colorectal cancer.

Front Genet. 2022-9-30

[4]
Circulating expression and clinical significance of LncRNA ANRIL in diabetic kidney disease.

Mol Biol Rep. 2022-11

[5]
Cuproptosis-Associated lncRNA Establishes New Prognostic Profile and Predicts Immunotherapy Response in Clear Cell Renal Cell Carcinoma.

Front Genet. 2022-7-15

[6]
Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells.

Kidney Int. 2022-8

[7]
Is a Novel Prognostic Biomarker and Facilitates Tumor Progression Through Epithelial-Mesenchymal Transition in Uveal Melanoma.

Front Immunol. 2022

[8]
LncRNA NEAT2 Modulates Pyroptosis of Renal Tubular Cells Induced by High Glucose in Diabetic Nephropathy (DN) by via miR-206 Regulation.

Biochem Genet. 2022-10

[9]
Quercetin Attenuates Podocyte Apoptosis of Diabetic Nephropathy Through Targeting EGFR Signaling.

Front Pharmacol. 2022-1-5

[10]
Polysome profiling followed by quantitative PCR for identifying potential micropeptide encoding long non-coding RNAs in suspension cell lines.

STAR Protoc. 2021-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索