Cagigas Maria L, Ariotti Nicholas, Hook Jeff, Rae James, Parton Robert G, Bryce Nicole S, Gunning Peter W, Hardeman Edna C
School of Biomedical Sciences, UNSW Sydney, Sydney, Australia.
Electron Microscope Unit, UNSW, Sydney, Australia.
Cytoskeleton (Hoboken). 2025 Jan;82(1-2):45-54. doi: 10.1002/cm.21883. Epub 2024 Jun 14.
The actin cytoskeleton is composed of both branched and unbranched actin filaments. In mammals, the unbranched actin filaments are primarily copolymers of actin and tropomyosin. Biochemical and imaging studies indicate that different tropomyosin isoforms are segregated to different actin filament populations in cells and tissues, providing isoform-specific functionality to the actin filament. Intrinsic to this model is the prediction that single-molecule imaging of tropomyosin isoforms would confirm homopolymer formation along the length of single actin filaments, a knowledge gap that remains unaddressed in the cellular environment. We combined chemical labeling of genetically engineered tropomyosin isoforms with electron tomography to locate individual tropomyosin molecules in fibroblasts. We find that the organization of two non-muscle tropomyosins, Tpm3.1 with Tpm4.2, can be distinguished from each other using light and electron microscopy. Visualization of single tropomyosin molecules associated with actin filaments supports the hypothesis that tropomyosins form continuous homopolymers, instead of heteropolymers, in the presence of all physiologically native actin-binding proteins. This is true for both isoforms tested. Furthermore, the data suggest that the tropomyosin molecules on one side of an actin filament may not be in register with those on the opposite side, indicating that each tropomyosin polymer may assembly independently.
肌动蛋白细胞骨架由分支和非分支的肌动蛋白丝组成。在哺乳动物中,非分支的肌动蛋白丝主要是肌动蛋白和原肌球蛋白的共聚物。生化和成像研究表明,不同的原肌球蛋白同工型在细胞和组织中被分隔到不同的肌动蛋白丝群体中,赋予肌动蛋白丝同工型特异性功能。该模型的内在预测是,原肌球蛋白同工型的单分子成像将证实沿着单个肌动蛋白丝的长度形成同聚物,这一知识空白在细胞环境中仍未得到解决。我们将基因工程原肌球蛋白同工型的化学标记与电子断层扫描相结合,以定位成纤维细胞中的单个原肌球蛋白分子。我们发现,使用光学显微镜和电子显微镜可以区分两种非肌肉原肌球蛋白Tpm3.1和Tpm4.2的组织方式。与肌动蛋白丝相关的单个原肌球蛋白分子的可视化支持了这样一种假设,即在所有生理上天然的肌动蛋白结合蛋白存在的情况下,原肌球蛋白形成连续的同聚物,而不是异聚物。两种测试的同工型都是如此。此外,数据表明,肌动蛋白丝一侧的原肌球蛋白分子可能与另一侧的原肌球蛋白分子不对齐,这表明每个原肌球蛋白聚合物可能独立组装。