Department of Human Oncology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States of America.
St. Lukes Radiation Oncology Associates, 915 E 1st St, Duluth, MN 55805, United States of America.
Phys Med Biol. 2024 Jun 26;69(13). doi: 10.1088/1361-6560/ad58a0.
Active bone marrow (ABM) can serve as both an organ at risk and a target in external beam radiotherapy.F-fluorothymidine (FLT) PET is the current gold standard for identifying proliferative ABM but it is not approved for human use, and PET scanners are not always available to radiotherapy clinics. Identifying ABM through other, more accessible imaging modalities will allow more patients to receive treatment specific to their ABM distribution. Multi-energy CT (MECT) and fat-fraction MRI (FFMRI) show promise in their ability to characterize bone marrow adiposity, but these methods require validation for identifying proliferative ABM.Six swine subjects were imaged using FFMRI, fast-kVp switching (FKS) MECT and sequential-scanning (SS) MECT to identify ABM volumes relative to FLT PET-derived ABM volumes. ABM was contoured on FLT PET images as the region within the bone marrow with a SUV above the mean. Bone marrow was then contoured on the FFMRI and MECT images, and thresholds were applied within these contours to determine which threshold produced the best agreement with the FLT PET determined ABM contour. Agreement between contours was measured using the Dice similarity coefficient (DSC).FFMRI produced the best estimate of the PET ABM contour. Compared to FLT PET ABM volumes, the FFMRI, SS MECT and FKS MECT ABM contours produced average peak DSC of 0.722 ± 0.080, 0.619 ± 0.070, and 0.464 ± 0.080, respectively. The ABM volume was overestimated by 40.51%, 97.63%, and 140.13% by FFMRI, SS MECT and FKS MECT, respectively.This study explored the ability of FFMRI and MECT to identify the proliferative relative to ABM defined by FLT PET. Of the methods investigated, FFMRI emerged as the most accurate approximation to FLT PET-derived active marrow contour, demonstrating superior performance by both DSC and volume comparison metrics. Both FFMRI and SS MECT show promise for providing patient-specific ABM treatments.
活跃骨髓(ABM)既可以作为危险器官,也可以作为外束放射治疗的靶器官。氟-18 氟代胸腺嘧啶(FLT)PET 是目前识别增殖性 ABM 的金标准,但尚未获得人体使用批准,并且并非所有放射治疗诊所都配备有 PET 扫描仪。通过其他更易获取的成像方式识别 ABM 将使更多患者能够接受针对其 ABM 分布的特定治疗。多能量 CT(MECT)和脂肪分数 MRI(FFMRI)在其识别骨髓脂肪含量的能力方面显示出了前景,但这些方法需要经过验证才能识别增殖性 ABM。六头猪接受了 FFMRI、快速千伏切换(FKS)MECT 和顺序扫描(SS)MECT 成像,以确定相对于 FLT PET 衍生的 ABM 体积的 ABM 体积。ABM 在 FLT PET 图像上进行轮廓描绘,方法是将骨骼骨髓内 SUV 高于平均值的区域作为 ABM。然后在 FFMRI 和 MECT 图像上对骨髓进行轮廓描绘,并在这些轮廓内应用阈值,以确定哪个阈值与 FLT PET 确定的 ABM 轮廓最吻合。使用 Dice 相似系数(DSC)来衡量轮廓之间的一致性。FFMRI 产生了对 PET ABM 轮廓的最佳估计。与 FLT PET ABM 体积相比,FFMRI、SS MECT 和 FKS MECT ABM 轮廓的平均峰值 DSC 分别为 0.722 ± 0.080、0.619 ± 0.070 和 0.464 ± 0.080。FFMRI、SS MECT 和 FKS MECT 分别将 ABM 体积高估了 40.51%、97.63%和 140.13%。本研究探索了 FFMRI 和 MECT 识别由 FLT PET 定义的增殖性 ABM 的能力。在所研究的方法中,FFMRI 作为与 FLT PET 衍生的活跃骨髓轮廓最接近的方法,通过 DSC 和体积比较指标都表现出了卓越的性能。FFMRI 和 SS MECT 都显示出为患者提供特定 ABM 治疗的潜力。