Dyke P, Musolino S, Kurkjian H, Ahmed-Braun D J M, Pennings A, Herrera I, Hoinka S, Kokkelmans S J J M F, Colussi V E, Vale C J
Optical Sciences Centre, ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.
Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06200 Nice, France.
Phys Rev Lett. 2024 May 31;132(22):223402. doi: 10.1103/PhysRevLett.132.223402.
Symmetry-breaking phase transitions are central to our understanding of states of matter. When a continuous symmetry is spontaneously broken, new excitations appear that are tied to fluctuations of the order parameter. In superconductors and fermionic superfluids, the phase and amplitude can fluctuate independently, giving rise to two distinct collective branches. However, amplitude fluctuations are difficult to both generate and measure, as they do not couple directly to the density of fermions and have only been observed indirectly to date. Here, we excite amplitude oscillations in an atomic Fermi gas with resonant interactions by an interaction quench. Exploiting the sensitivity of Bragg spectroscopy to the amplitude of the order parameter, we measure the time-resolved response of the atom cloud, directly revealing amplitude oscillations at twice the frequency of the gap. The magnitude of the oscillatory response shows a strong temperature dependence, and the oscillations appear to decay faster than predicted by time-dependent Bardeen-Cooper-Schrieffer theory applied to our experimental setup.
对称性破缺相变是我们理解物质状态的核心。当连续对称性自发破缺时,会出现与序参量涨落相关的新激发态。在超导体和费米子超流体中,相位和振幅可以独立涨落,从而产生两个不同的集体分支。然而,振幅涨落既难以产生也难以测量,因为它们不直接与费米子密度耦合,迄今为止仅通过间接方式观测到。在这里,我们通过相互作用猝灭在具有共振相互作用的原子费米气体中激发振幅振荡。利用布拉格光谱对序参量振幅的敏感性,我们测量了原子云的时间分辨响应,直接揭示了在能隙频率两倍处的振幅振荡。振荡响应的幅度表现出强烈的温度依赖性,并且这些振荡的衰减速度似乎比应用于我们实验装置的含时巴丁 - 库珀 - 施里弗理论所预测的要快。