Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; Centre de Bio-Pathologie, Banque de Tissus, CHU of Lille, Lille, France.
Exp Hematol. 2024 Sep;137:104253. doi: 10.1016/j.exphem.2024.104253. Epub 2024 Jun 13.
Acute myeloid leukemias are a group of hematological malignancies characterized by a poor prognosis for survival. The discovery of oncogenic mutations in the FMS-like tyrosine kinase 3 (FLT3) gene has led to the development of tyrosine kinase inhibitors such as quizartinib. However, achieving complete remission in patients remains challenging because these new tyrosine kinase inhibitors (TKIs) are unable to completely eradicate all leukemic cells. Residual leukemic cells persist during quizartinib treatment, leading to the rapid emergence of drug-resistant leukemia. Given that mitochondrial oxidative metabolism promotes the survival of leukemic cells after exposure to multiple anticancer drugs, we characterized the metabolism of leukemic cells that persisted during quizartinib treatment and developed metabolic strategies to eradicate them. In our study, employing biochemical and metabolomics approaches, we confirmed that the survival of leukemic cells treated with FLT3 inhibitors critically depends on maintaining mitochondrial metabolism, specifically through glutamine oxidation. We uncovered a synergistic interaction between the FLT3 inhibitor quizartinib and L-asparaginase, operating through antimetabolic mechanisms. Utilizing various models of persistent leukemia, we demonstrated that leukemic cells resistant to quizartinib are susceptible to L-asparaginase. This combined therapeutic strategy shows promise in reducing the development of resistance to FLT3 inhibitors, offering a potential strategy to enhance treatment outcomes.
急性髓系白血病是一组血液系统恶性肿瘤,其生存预后较差。FMS 样酪氨酸激酶 3(FLT3)基因的致癌突变的发现,导致了诸如 quizartinib 等酪氨酸激酶抑制剂的发展。然而,由于这些新的酪氨酸激酶抑制剂(TKIs)无法完全清除所有白血病细胞,因此仍难以使患者达到完全缓解。在 quizartinib 治疗期间,残留的白血病细胞仍然存在,导致耐药性白血病迅速出现。鉴于线粒体氧化代谢促进白血病细胞在暴露于多种抗癌药物后的存活,我们对在 quizartinib 治疗期间持续存在的白血病细胞的代谢进行了表征,并开发了代谢策略来清除它们。在我们的研究中,采用生化和代谢组学方法,我们证实了 FLT3 抑制剂治疗的白血病细胞的存活严重依赖于维持线粒体代谢,特别是通过谷氨酰胺氧化。我们发现 FLT3 抑制剂 quizartinib 和 L-天冬酰胺酶之间存在协同作用,其作用机制是抗代谢。利用持续存在的白血病的各种模型,我们证明了对 quizartinib 耐药的白血病细胞对 L-天冬酰胺酶敏感。这种联合治疗策略有望减少对 FLT3 抑制剂的耐药性的发展,为提高治疗效果提供了一种潜在策略。