Pajusalu Mihkel, Seager Sara, Huang Jingcheng, Petkowski Janusz J
Department of Earth, Planetary, and Atmospheric Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Tartu Observatory, University of Tartu, 61602, Tõravere, Estonia.
Sci Rep. 2024 Jun 15;14(1):13823. doi: 10.1038/s41598-024-64114-4.
Exoplanet atmospheres are expected to vary significantly in thickness and chemical composition, leading to a continuum of differences in surface pressure and atmospheric density. This variability is exemplified within our Solar System, where the four rocky planets exhibit surface pressures ranging from 1 nPa on Mercury to 9.2 MPa on Venus. The direct effects and potential challenges of atmospheric pressure and density on life have rarely been discussed. For instance, atmospheric density directly affects the possibility of active flight in organisms, a critical factor since without it, dispersing across extensive and inhospitable terrains becomes a major limitation for the expansion of complex life. In this paper, we propose the existence of a critical atmospheric density threshold below which active flight is unfeasible, significantly impacting biosphere development. To qualitatively assess this threshold and differentiate it from energy availability constraints, we analyze the limits of active flight on Earth, using the common fruit fly, Drosophila melanogaster, as a model organism. We subjected Drosophila melanogaster to various atmospheric density scenarios and reviewed previous data on flight limitations. Our observations show that flies in an N-enriched environment recover active flying abilities more efficiently than those in a helium-enriched environment, highlighting behavioral differences attributable to atmospheric density vs. oxygen deprivation.
系外行星的大气层预计在厚度和化学成分上会有显著差异,从而导致表面压力和大气密度存在一系列差异。这种变异性在我们的太阳系中得到了体现,其中四颗岩石行星的表面压力范围从水星上的1纳帕到金星上的9.2兆帕。大气压力和密度对生命的直接影响和潜在挑战很少被讨论。例如,大气密度直接影响生物体主动飞行的可能性,这是一个关键因素,因为没有它,在广阔且不适宜居住的地形上扩散就成为复杂生命扩张的主要限制。在本文中,我们提出存在一个临界大气密度阈值,低于该阈值主动飞行是不可行的,这对生物圈发展有重大影响。为了定性评估这个阈值并将其与能量可用性限制区分开来,我们以常见的果蝇黑腹果蝇作为模式生物,分析地球上主动飞行的极限。我们让黑腹果蝇处于各种大气密度场景中,并回顾了以前关于飞行限制的数据。我们的观察表明,在富含氮气的环境中的果蝇比在富含氦气的环境中的果蝇更有效地恢复主动飞行能力,这突出了归因于大气密度与缺氧的行为差异。