Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Japan.
J Mol Biol. 2024 Aug 15;436(16):168666. doi: 10.1016/j.jmb.2024.168666. Epub 2024 Jun 14.
Heliorhodopsin (HeR) is a new rhodopsin family discovered in 2018 through functional metagenomic analysis. Similar to microbial rhodopsins, HeR has an all-trans retinal chromophore, and its photoisomerization to the 13-cis form triggers a relatively slow photocycle with sequential intermediate states (K, M, and O intermediates). The O intermediate has a relatively long lifetime and is a putative active state for transferring signals or regulating enzymatic reactions. Although the first discovered HeR, 48C12, was found in bacteria and the second HeR (TaHeR) was found in archaea, their key amino acid residues and molecular architectures have been recognized to be well conserved. Nevertheless, the rise and decay kinetics of the O intermediate are faster in 48C12 than in TaHeR. Here, using a new infrared spectroscopic technique with quantum cascade lasers, we clarified that the hydrogen bond between transmembrane helices (TM) 3 and 4 is essential for the altered O kinetics (Ser112 and Asn138 in 48C12). Interconverting mutants of 48C12 and TaHeR clearly revealed that the hydrogen bond is important for regulating the dynamics of the O intermediate. Overall, our study sheds light on the importance of the hydrogen bond between TM3 and TM4 in heliorhodopsins, similar to the DC gate in channelrhodopsins.
嗜盐菌视紫红蛋白(HeR)是 2018 年通过功能宏基因组分析发现的一个新的视紫红蛋白家族。与微生物视紫红蛋白相似,HeR 具有全反式视黄醛发色团,其光异构化为 13-顺式形式引发相对缓慢的光循环,具有顺序中间状态(K、M 和 O 中间态)。O 中间态具有相对较长的寿命,是用于传递信号或调节酶反应的假定活性状态。尽管首次发现的 HeR(48C12)存在于细菌中,第二个 HeR(TaHeR)存在于古菌中,但它们的关键氨基酸残基和分子结构已被认为得到很好的保守。然而,48C12 中 O 中间态的上升和衰减动力学比 TaHeR 快。在这里,我们使用带有量子级联激光器的新红外光谱技术,阐明了跨膜螺旋(TM)3 和 4 之间的氢键对于改变 O 动力学至关重要(48C12 中的 Ser112 和 Asn138)。48C12 和 TaHeR 的互变突变体清楚地表明氢键对于调节 O 中间态的动力学很重要。总的来说,我们的研究阐明了 TM3 和 TM4 之间氢键在嗜盐菌视紫红蛋白中的重要性,类似于通道视紫红蛋白中的 DC 门。