Suppr超能文献

基于循环一致性生成对抗网络提取的合成 MRI 图像放射组学特征预测胶质母细胞瘤预后。

Prediction of prognosis in glioblastoma with radiomics features extracted by synthetic MRI images using cycle-consistent GAN.

机构信息

Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan.

Department of Radiology, National Hospital Organization Kure Medical Center, Hiroshima, Japan.

出版信息

Phys Eng Sci Med. 2024 Sep;47(3):1227-1243. doi: 10.1007/s13246-024-01443-8. Epub 2024 Jun 17.

Abstract

To propose a style transfer model for multi-contrast magnetic resonance imaging (MRI) images with a cycle-consistent generative adversarial network (CycleGAN) and evaluate the image quality and prognosis prediction performance for glioblastoma (GBM) patients from the extracted radiomics features. Style transfer models of T1 weighted MRI image (T1w) to T2 weighted MRI image (T2w) and T2w to T1w with CycleGAN were constructed using the BraTS dataset. The style transfer model was validated with the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. Moreover, imaging features were extracted from real and synthesized images. These features were transformed to rad-scores by the least absolute shrinkage and selection operator (LASSO)-Cox regression. The prognosis performance was estimated by the Kaplan-Meier method. For the accuracy of the image quality of the real and synthesized MRI images, the MI, RMSE, PSNR, and SSIM were 0.991 ± 2.10 , 2.79 ± 0.16, 40.16 ± 0.38, and 0.995 ± 2.11 , for T2w, and .992 ± 2.63 , 2.49 ± 6.89 , 40.51 ± 0.22, and 0.993 ± 3.40 for T1w, respectively. The survival time had a significant difference between good and poor prognosis groups for both real and synthesized T2w (p < 0.05). However, the survival time had no significant difference between good and poor prognosis groups for both real and synthesized T1w. On the other hand, there was no significant difference between the real and synthesized T2w in both good and poor prognoses. The results of T1w were similar in the point that there was no significant difference between the real and synthesized T1w. It was found that the synthesized image could be used for prognosis prediction. The proposed prognostic model using CycleGAN could reduce the cost and time of image scanning, leading to a promotion to build the patient's outcome prediction with multi-contrast images.

摘要

提出了一种基于循环一致性生成对抗网络(CycleGAN)的多对比度磁共振成像(MRI)图像风格迁移模型,并从提取的放射组学特征评估胶质母细胞瘤(GBM)患者的图像质量和预后预测性能。使用 BraTS 数据集构建了 T1 加权 MRI 图像(T1w)到 T2 加权 MRI 图像(T2w)和 T2w 到 T1w 的 CycleGAN 风格迁移模型。使用癌症基因组图谱胶质母细胞瘤多形性(TCGA-GBM)数据集验证了该模型。此外,从真实和合成图像中提取了成像特征。通过最小绝对收缩和选择算子(LASSO)-Cox 回归将这些特征转换为 rad-scores。通过 Kaplan-Meier 方法估计预后性能。对于真实和合成 MRI 图像的图像质量的准确性,MI、RMSE、PSNR 和 SSIM 分别为 0.991±2.10、2.79±0.16、40.16±0.38 和 0.995±2.11,用于 T2w 和 0.992±2.63、2.49±6.89、40.51±0.22 和 0.993±3.40,用于 T1w。对于真实和合成 T2w,预后良好和预后不良组之间的生存时间有显著差异(p<0.05)。然而,对于真实和合成 T1w,预后良好和预后不良组之间的生存时间没有显著差异。另一方面,在良好和不良预后组中,真实和合成 T2w 之间没有显著差异。真实和合成 T1w 的结果相似,即真实和合成 T1w 之间没有显著差异。研究发现,合成图像可用于预后预测。使用 CycleGAN 构建的预测模型可以降低图像扫描的成本和时间,从而促进利用多对比度图像构建患者的预后预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e1/11408565/0343f4008e4d/13246_2024_1443_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验