Suppr超能文献

婴儿颅面系统对咀嚼力引起的机械负荷的功能适应性。

Functional adaptation of the infant craniofacial system to mechanical loadings arising from masticatory forces.

机构信息

Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.

Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Tarragona 43007, Spain.

出版信息

Proc Biol Sci. 2024 Jun;291(2025):20240654. doi: 10.1098/rspb.2024.0654. Epub 2024 Jun 19.

Abstract

The morphology and biomechanics of infant crania undergo significant changes between the pre- and post-weaning phases due to increasing loading of the masticatory system. The aims of this study were to characterize the changes in muscle forces, bite forces and the pattern of mechanical strain and stress arising from the aforementioned forces across crania in the first 48 months of life using imaging and finite element methods. A total of 51 head computed tomography scans of normal individuals were collected and analysed from a larger database of 217 individuals. The estimated mean muscle forces of temporalis, masseter and medial pterygoid increase from 30.9 to 87.0 N, 25.6 to 69.6 N and 23.1 to 58.9 N, respectively (0-48 months). Maximum bite force increases from 90.5 to 184.2 N (3-48 months). There is a change in the pattern of strain and stress from the calvaria to the face during postnatal development. Overall, this study highlights the changes in the mechanics of the craniofacial system during normal development. It further raises questions as to how and what level of changes in the mechanical forces during the development can alter the morphology of the craniofacial system.

摘要

婴儿颅骨的形态和生物力学在断奶前和断奶后阶段会发生显著变化,这是由于咀嚼系统的负荷增加所致。本研究的目的是使用成像和有限元方法,在生命的头 48 个月内,从颅骨的角度来描述上述力量引起的肌肉力量、咬合力以及机械应变和应力模式的变化。本研究共收集了 51 例正常个体的头颅计算机断层扫描,并对来自更大数据库的 217 例个体进行了分析。颞肌、咬肌和翼内肌的估计平均肌肉力量分别从 30.9N 增加到 87.0N、25.6N 增加到 69.6N 和 23.1N 增加到 58.9N(0-48 个月)。最大咬合力从 90.5N 增加到 184.2N(3-48 个月)。在出生后发育过程中,从颅骨到面部的应变和应力模式发生了变化。总的来说,本研究强调了正常发育过程中颅面系统力学的变化。它进一步提出了这样的问题,即在发育过程中机械力的变化方式和程度如何以及可以改变颅面系统的形态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea41/11286155/99301813c2da/rspb.2024.0654.f001.jpg

相似文献

1
Functional adaptation of the infant craniofacial system to mechanical loadings arising from masticatory forces.
Proc Biol Sci. 2024 Jun;291(2025):20240654. doi: 10.1098/rspb.2024.0654. Epub 2024 Jun 19.
2
The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting.
Ann Anat. 2016 Jan;203:59-68. doi: 10.1016/j.aanat.2015.03.002. Epub 2015 Mar 21.
5
Predicting bite force and cranial biomechanics in the largest fossil rodent using finite element analysis.
J Anat. 2015 Mar;226(3):215-23. doi: 10.1111/joa.12282. Epub 2015 Feb 4.
6
Migraine and masticatory muscle volume, bite force, and craniofacial morphology.
Headache. 2001 Jan;41(1):49-56. doi: 10.1046/j.1526-4610.2001.111006049.x.
7
The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.
Anat Rec (Hoboken). 2016 Jul;299(7):828-39. doi: 10.1002/ar.23358. Epub 2016 May 10.

引用本文的文献

1
A physico-mechanical model of postnatal craniofacial growth in human.
iScience. 2024 Jul 29;27(9):110617. doi: 10.1016/j.isci.2024.110617. eCollection 2024 Sep 20.
2
BounTI (boundary-preserving threshold iteration): A user-friendly tool for automatic hard tissue segmentation.
J Anat. 2024 Dec;245(6):829-841. doi: 10.1111/joa.14063. Epub 2024 May 17.

本文引用的文献

1
The biomechanics of chewing and suckling in the infant: A potential mechanism for physiologic metopic suture closure.
PLoS Comput Biol. 2023 Jun 22;19(6):e1011227. doi: 10.1371/journal.pcbi.1011227. eCollection 2023 Jun.
2
Normal human craniofacial growth and development from 0 to 4 years.
Sci Rep. 2023 Jun 14;13(1):9641. doi: 10.1038/s41598-023-36646-8.
3
Icex: Advances in the automatic extraction and volume calculation of cranial cavities.
J Anat. 2023 Jun;242(6):1172-1183. doi: 10.1111/joa.13843. Epub 2023 Feb 11.
4
One step further in biomechanical models in palaeontology: a nonlinear finite element analysis review.
PeerJ. 2022 Aug 8;10:e13890. doi: 10.7717/peerj.13890. eCollection 2022.
5
Mechanical loading of cranial joints minimizes the craniofacial phenotype in Crouzon syndrome.
Sci Rep. 2022 Jun 11;12(1):9693. doi: 10.1038/s41598-022-13807-9.
6
A Computational Framework to Predict Calvarial Growth: Optimising Management of Sagittal Craniosynostosis.
Front Bioeng Biotechnol. 2022 May 24;10:913190. doi: 10.3389/fbioe.2022.913190. eCollection 2022.
7
Management of sagittal craniosynostosis: morphological comparison of eight surgical techniques.
Br J Oral Maxillofac Surg. 2022 May;60(4):499-506. doi: 10.1016/j.bjoms.2021.09.017. Epub 2021 Oct 5.
8
The 27 Facial Sutures: Timing and Clinical Consequences of Closure.
Plast Reconstr Surg. 2022 Mar 1;149(3):701-720. doi: 10.1097/PRS.0000000000008816.
9
Physiologic Timeline of Cranial-Base Suture and Synchondrosis Closure.
Plast Reconstr Surg. 2021 Dec 1;148(6):973e-982e. doi: 10.1097/PRS.0000000000008570.
10
The role of the nasal region in craniofacial growth: An investigation using path analysis.
Anat Rec (Hoboken). 2022 Aug;305(8):1892-1909. doi: 10.1002/ar.24719. Epub 2021 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验