UCL Institute of Child Health and Great Ormond Street Hospital, London, UK.
UCL Queen Square Institute of Neurology, Clinical and Movement Neurosciences, London, UK.
Nat Commun. 2024 Jun 18;15(1):4759. doi: 10.1038/s41467-024-48961-3.
Parkinson's disease is increasingly prevalent. It progresses from the pre-motor stage (characterised by non-motor symptoms like REM sleep behaviour disorder), to the disabling motor stage. We need objective biomarkers for early/pre-motor disease stages to be able to intervene and slow the underlying neurodegenerative process. Here, we validate a targeted multiplexed mass spectrometry assay for blood samples from recently diagnosed motor Parkinson's patients (n = 99), pre-motor individuals with isolated REM sleep behaviour disorder (two cohorts: n = 18 and n = 54 longitudinally), and healthy controls (n = 36). Our machine-learning model accurately identifies all Parkinson patients and classifies 79% of the pre-motor individuals up to 7 years before motor onset by analysing the expression of eight proteins-Granulin precursor, Mannan-binding-lectin-serine-peptidase-2, Endoplasmatic-reticulum-chaperone-BiP, Prostaglaindin-H2-D-isomaerase, Interceullular-adhesion-molecule-1, Complement C3, Dickkopf-WNT-signalling pathway-inhibitor-3, and Plasma-protease-C1-inhibitor. Many of these biomarkers correlate with symptom severity. This specific blood panel indicates molecular events in early stages and could help identify at-risk participants for clinical trials aimed at slowing/preventing motor Parkinson's disease.
帕金森病的发病率越来越高。它从运动前期(以 REM 睡眠行为障碍等非运动症状为特征)进展到致残的运动期。我们需要针对早期/运动前期疾病阶段的客观生物标志物,以便能够进行干预并减缓潜在的神经退行性过程。在这里,我们验证了一种针对最近诊断为运动型帕金森病患者(n=99)、具有孤立性 REM 睡眠行为障碍的运动前期个体(两个队列:n=18 和 n=54 进行纵向研究)和健康对照者(n=36)的血液样本的靶向多重质谱分析检测方法。我们的机器学习模型通过分析八种蛋白质-颗粒蛋白前体、甘露聚糖结合凝集素-丝氨酸肽酶-2、内质网伴侣- BiP、前列腺素-H2-D-异构酶、细胞间黏附分子-1、补体 C3、Dickkopf-WNT 信号通路抑制剂-3 和血浆蛋白酶 C1-抑制剂的表达,准确地识别出所有帕金森病患者,并通过分析 8 种蛋白质的表达,将 79%的运动前期个体在运动症状出现前 7 年进行分类。这些生物标志物中的许多与症状严重程度相关。这个特定的血液检测面板可以指示早期阶段的分子事件,并有助于识别有风险的参与者,以便进行旨在减缓/预防运动型帕金森病的临床试验。