文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高脂饮食诱导的肥胖易感和肥胖抵抗小鼠肠道微生物群和花生四烯酸代谢的特征。

Distinct Gut Microbiota and Arachidonic Acid Metabolism in Obesity-Prone and Obesity-Resistant Mice with a High-Fat Diet.

机构信息

National Key Laboratory of Veterinary Public Health and Safety, Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

出版信息

Nutrients. 2024 May 23;16(11):1579. doi: 10.3390/nu16111579.


DOI:10.3390/nu16111579
PMID:38892512
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11174461/
Abstract

An imbalance of energy intake and expenditure is commonly considered as the fundamental cause of obesity. However, individual variations in susceptibility to obesity do indeed exist in both humans and animals, even among those with the same living environments and dietary intakes. To further explore the potential influencing factors of these individual variations, male C57BL/6J mice were used for the development of obesity-prone and obesity-resistant mice models and were fed high-fat diets for 16 weeks. Compared to the obesity-prone mice, the obesity-resistant group showed a lower body weight, liver weight, adipose accumulation and pro-inflammatory cytokine levels. 16S rRNA sequencing, which was conducted for fecal microbiota analysis, found that the fecal microbiome's structural composition and biodiversity had changed in the two groups. The genera , , and increased in the obesity-prone mice, and the genera , and were enriched in the obesity-resistant mice. Using widely targeted metabolomics analysis, 166 differential metabolites were found, especially those products involved in arachidonic acid (AA) metabolism, which were significantly reduced in the obesity-resistant mice. Moreover, KEGG pathway analysis exhibited that AA metabolism was the most enriched pathway. Significantly altered bacteria and obesity-related parameters, as well as AA metabolites, exhibited strong correlations. Overall, the phenotypes of the obesity-prone and obesity-resistant mice were linked to gut microbiota and AA metabolism, providing new insight for developing an in-depth understanding of the driving force of obesity resistance and a scientific reference for the targeted prevention and treatment of obesity.

摘要

能量摄入和支出的不平衡通常被认为是肥胖的根本原因。然而,人类和动物中确实存在肥胖易感性的个体差异,即使在生活环境和饮食摄入相同的情况下也是如此。为了进一步探讨这些个体差异的潜在影响因素,使用雄性 C57BL/6J 小鼠开发了肥胖易感和肥胖抵抗小鼠模型,并给予高脂肪饮食 16 周。与肥胖易感小鼠相比,肥胖抵抗组的体重、肝重、脂肪堆积和促炎细胞因子水平较低。对粪便微生物群进行 16S rRNA 测序分析发现,两组粪便微生物群的结构组成和生物多样性发生了变化。肥胖易感小鼠中属 、 、 和 增加,肥胖抵抗小鼠中属 、 和 富集。通过广泛靶向代谢组学分析,发现了 166 种差异代谢物,特别是参与花生四烯酸 (AA) 代谢的产物明显减少。此外,KEGG 途径分析表明 AA 代谢是最丰富的途径。显著改变的细菌和肥胖相关参数以及 AA 代谢物之间存在强烈的相关性。总的来说,肥胖易感和肥胖抵抗小鼠的表型与肠道微生物群和 AA 代谢有关,为深入了解肥胖抵抗的驱动力提供了新的见解,并为肥胖的靶向预防和治疗提供了科学参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/80f676010cd1/nutrients-16-01579-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/8f295f4e6b48/nutrients-16-01579-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/81632920061c/nutrients-16-01579-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/d8e13787b27e/nutrients-16-01579-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/1f03d4f5b4c7/nutrients-16-01579-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/c7ad9fdf85af/nutrients-16-01579-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/af6223d8f6f9/nutrients-16-01579-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/320aff94fb19/nutrients-16-01579-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/80f676010cd1/nutrients-16-01579-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/8f295f4e6b48/nutrients-16-01579-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/81632920061c/nutrients-16-01579-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/d8e13787b27e/nutrients-16-01579-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/1f03d4f5b4c7/nutrients-16-01579-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/c7ad9fdf85af/nutrients-16-01579-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/af6223d8f6f9/nutrients-16-01579-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/320aff94fb19/nutrients-16-01579-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b999/11174461/80f676010cd1/nutrients-16-01579-g008.jpg

相似文献

[1]
Distinct Gut Microbiota and Arachidonic Acid Metabolism in Obesity-Prone and Obesity-Resistant Mice with a High-Fat Diet.

Nutrients. 2024-5-23

[2]
Gut microbiota-mediated xanthine metabolism is associated with resistance to high-fat diet-induced obesity.

J Nutr Biochem. 2021-2

[3]
A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference.

Nutrients. 2020-10-20

[4]
Metabolic and Gut Microbial Characterization of Obesity-Prone Mice under a High-Fat Diet.

J Proteome Res. 2019-3-11

[5]
Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

Mol Metab. 2016-10-13

[6]
Suppression of High-Fat Diet-Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota.

J Nutr. 2020-9-1

[7]
Isolated from Different Hosts Modifies the Intestinal Microbiota and Displays Differential Metabolic and Immunomodulatory Properties in Mice Fed a High-Fat Diet.

Nutrients. 2021-3-21

[8]
The role of gut microbiota in the resistance to obesity in mice fed a high fat diet.

Int J Food Sci Nutr. 2020-6

[9]
The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism.

Microbiome. 2018-8-2

[10]
Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation.

Eur J Nutr. 2020-9

引用本文的文献

[1]
Arachidonic acid metabolism in metabolic dysfunction-associated steatotic liver disease and liver fibrosis.

Hepatol Commun. 2025-8-29

[2]
Temporal Dynamics of Fecal Microbiome and Short-Chain Fatty Acids in Sows from Early Pregnancy to Weaning.

Animals (Basel). 2025-7-27

[3]
HM108 alleviates obesity in rats fed a high-fat diet by modulating the gut microbiota, metabolites, and inhibiting the JAK-STAT signalling pathway.

Front Nutr. 2025-6-25

[4]
Effects of Supplementation on Growth Performance, Hepatic Lipid Metabolism, and mRNA Expression of Lipid Metabolism Genes and Intestinal Flora in Geese.

Animals (Basel). 2025-1-18

本文引用的文献

[1]
Gut microbiota affects obesity susceptibility in mice through gut metabolites.

Front Microbiol. 2024-2-21

[2]
Biomarkers of Metabolic Adaptation to High Dietary Fats in a Mouse Model of Obesity Resistance.

Metabolites. 2024-1-20

[3]
Obesity-Resistant Mice on a High-Fat Diet Display a Distinct Phenotype Linked to Enhanced Lipid Metabolism.

Nutrients. 2024-1-4

[4]
Association of the gut microbiota with clinical variables in obese and lean Emirati subjects.

Front Microbiol. 2023-8-23

[5]
Does gut microbiota affect the success of weight loss? Evidence and speculation.

Nutrition. 2023-12

[6]
Adipose Tissue Remodeling in Pathophysiology.

Annu Rev Pathol. 2023-1-24

[7]
Orally administered Odoribacter laneus improves glucose control and inflammatory profile in obese mice by depleting circulating succinate.

Microbiome. 2022-8-25

[8]
Gut Microbiota Patterns Predicting Long-Term Weight Loss Success in Individuals with Obesity Undergoing Nonsurgical Therapy.

Nutrients. 2022-8-3

[9]
Changes in the Mucosa-Associated Microbiome and Transcriptome across Gut Segments Are Associated with Obesity in a Metabolic Syndrome Porcine Model.

Microbiol Spectr. 2022-8-31

[10]
Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis.

Nutrients. 2021-12-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索