Suppr超能文献

基于静电相互作用,利用三脚架硫酸根结合受体对锂离子进行选择性固液萃取。

Selective Solid-Liquid Extraction of Lithium Cation Using Tripodal Sulfate-Binding Receptors Driven by Electrostatic Interactions.

作者信息

Chen Ya-Zhi, He Ying-Chun, Yan Li, Zhao Wei, Wu Biao

机构信息

Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.

Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.

出版信息

Molecules. 2024 May 22;29(11):2445. doi: 10.3390/molecules29112445.

Abstract

Owing to the important role of and increasing demand for lithium resources, lithium extraction is crucial. The use of molecular extractants is a promising strategy for selective lithium recovery, in which the interaction between lithium and the designed extractant can be manipulated at the molecular level. Herein, we demonstrate that anion receptors of tripodal hexaureas can selectively extract LiSO solids into water containing DMSO (0.8% water) compared to other alkali metal sulfates. The hexaurea receptor with terminal hexyl chains displays the best Li extraction selectivity at 2-fold over Na and 12.5-fold over K. The driving force underpinning selective lithium extraction is due to the combined interactions of Li-SO electrostatics and the ion-dipole interaction of the lithium-receptor (carbonyl groups and N atoms); the latter was found to be cation size dependent, as supported by computational calculations. This work indicates that anion binding receptors could drive selective cation extraction, thus providing new insights into the design of receptors for ion recognition and separation.

摘要

由于锂资源的重要作用和不断增长的需求,锂的提取至关重要。使用分子萃取剂是选择性回收锂的一种有前景的策略,其中锂与设计的萃取剂之间的相互作用可以在分子水平上进行调控。在此,我们证明了三脚架型六脲阴离子受体与其他碱金属硫酸盐相比,能够将硫酸锂固体选择性地萃取到含有二甲基亚砜(0.8%水)的水中。带有末端己基链的六脲受体表现出最佳的锂萃取选择性,对钠的选择性为2倍,对钾的选择性为12.5倍。选择性锂萃取的驱动力源于锂与硫酸根之间的静电相互作用以及锂与受体(羰基和氮原子)之间的离子 - 偶极相互作用;计算结果表明,后者取决于阳离子大小。这项工作表明阴离子结合受体可以驱动选择性阳离子萃取,从而为离子识别和分离受体的设计提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8d5/11173669/daf70f653bea/molecules-29-02445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验