Correa Hernando, Peña Lara Diego, Mosquera-Vargas Edgar
Instituto Interdisciplinario de las Ciencias, Universidad del Quindío, Armenia 630004, Colombia.
Grupo de Transiciones de Fases y Materiales Funcionales, Departamento de Física, Cali 760032, Colombia.
Molecules. 2024 May 24;29(11):2491. doi: 10.3390/molecules29112491.
Silver iodide is a prototype compound of superionic conductors that allows ions to flow through its structure. It exhibits a first-order phase transition at 420 K, characterized by an abrupt change in its ionic conductivity behavior, and above this temperature, its ionic conductivity increases by more than three orders of magnitude. Introducing small concentrations of carbon into the silver iodide structure produces a new material with a mixed conductivity (ionic and electronic) that increases with increasing temperature. In this work, we report the experimental results of the ionic conductivity as a function of the reciprocal temperature for the (AgI) - C mixture at low carbon concentrations ( = 0.99, 0.98, and 0.97). The ionic conductivity behavior as a function of reciprocal temperature was well fitted using a phenomenological model based on a random variable theory with a probability distribution function for the carriers. The experimental data show a proximity effect between the C and AgI phases. As a consequence of this proximity behavior, carbon concentration or temperature can control the conductivity of the (AgI) - C mixture.
碘化银是超离子导体的原型化合物,它能使离子在其结构中流动。它在420K时表现出一级相变,其特征是离子传导行为发生突变,高于此温度时,其离子电导率增加超过三个数量级。向碘化银结构中引入低浓度的碳会产生一种具有混合电导率(离子和电子)的新材料,该电导率随温度升高而增加。在这项工作中,我们报告了低碳浓度(=0.99、0.98和0.97)下(AgI)-C混合物的离子电导率随倒数温度变化的实验结果。使用基于随机变量理论和载流子概率分布函数的唯象模型,很好地拟合了离子电导率随倒数温度的变化行为。实验数据显示了C相和AgI相之间的邻近效应。由于这种邻近行为,碳浓度或温度可以控制(AgI)-C混合物的电导率。