Suppr超能文献

新型增稠剂在超临界二氧化碳中增稠及溶解性的分子动力学模拟

Molecular Dynamics Simulation on Thickening and Solubility Properties of Novel Thickener in Supercritical Carbon Dioxide.

作者信息

Wang Xiaohui, Liang Shiwei, Zhang Qihong, Wang Tianjiao, Zhang Xiao

机构信息

Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing 102249, China.

National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, Beijing 102249, China.

出版信息

Molecules. 2024 May 27;29(11):2529. doi: 10.3390/molecules29112529.

Abstract

Supercritical CO has wide application in enhancing oil recovery, but the low viscosity of liquid CO can lead to issues such as poor proppant-carrying ability and high filtration loss. Therefore, the addition of thickening agents to CO is vital. Hydrocarbon polymers, as a class of green and sustainable materials, hold tremendous potential for acting as thickeners in supercritical CO systems, and PVAc is one of the best-performing hydrocarbon thickeners. To further improve the viscosity enhancement and solubility of PVAc, here we designed a novel polymer structure, PVAO, by introducing CO-affine functional groups to PVAc. Molecular dynamics simulations were adopted to analyze viscosity and relevant solubility parameters systematically. We found that PVAO exhibits superior performance, with a viscosity enhancement of 1.5 times that of PVAc in supercritical CO. While in the meantime, PVAO maintains better solubility characteristics than PVAc. Our findings offer insights for the future design of other high-performance polymers.

摘要

超临界CO₂在提高石油采收率方面有广泛应用,但液态CO₂的低粘度会导致诸如支撑剂携带能力差和滤失率高等问题。因此,向CO₂中添加增稠剂至关重要。烃类聚合物作为一类绿色可持续材料,在超临界CO₂体系中作为增稠剂具有巨大潜力,聚醋酸乙烯酯(PVAc)是性能最佳的烃类增稠剂之一。为进一步提高PVAc的增粘性能和溶解性,我们在此通过向PVAc引入亲CO₂官能团设计了一种新型聚合物结构PVAO。采用分子动力学模拟系统分析粘度和相关溶解参数。我们发现PVAO表现出优异性能,在超临界CO₂中的粘度增强是PVAc的1.5倍。与此同时,PVAO比PVAc保持更好的溶解特性。我们的研究结果为未来其他高性能聚合物的设计提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e02/11173921/70c0a8c02187/molecules-29-02529-g001.jpg

相似文献

3
Research progress on supercritical CO thickeners.
Soft Matter. 2021 May 26;17(20):5107-5115. doi: 10.1039/d1sm00189b.
4
Preparation and Performance of Supercritical Carbon Dioxide Thickener.
Polymers (Basel). 2020 Dec 28;13(1):78. doi: 10.3390/polym13010078.
6
Influence of Supercritical CO Fracturing Fluid on the Permeability of Shale Reservoir and Mechanism Analysis.
ACS Omega. 2024 May 20;9(22):23294-23302. doi: 10.1021/acsomega.3c09728. eCollection 2024 Jun 4.
7
Evaluation of Silicone Fluids and Resins as CO Thickeners for Enhanced Oil Recovery Using a Computational and Experimental Approach.
ACS Omega. 2021 Sep 13;6(38):24803-24813. doi: 10.1021/acsomega.1c03660. eCollection 2021 Sep 28.
8
Factor analysis and mechanism disclosure of supercritical CO filtration behavior in tight shale reservoirs.
Environ Sci Pollut Res Int. 2022 Mar;29(12):17682-17694. doi: 10.1007/s11356-021-17045-w. Epub 2021 Oct 21.

本文引用的文献

1
Reference Correlation for the Viscosity of Carbon Dioxide.
J Phys Chem Ref Data. 2017;46. doi: 10.1063/1.4977429. Epub 2017 Mar 20.
2
Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method.
J Chem Theory Comput. 2015 Aug 11;11(8):3537-46. doi: 10.1021/acs.jctc.5b00351. Epub 2015 Jul 23.
3
Exploration of CO2-Philicity of Poly(vinyl acetate-co-alkyl vinyl ether) through Molecular Modeling and Dissolution Behavior Measurement.
J Phys Chem B. 2015 Sep 24;119(38):12490-501. doi: 10.1021/acs.jpcb.5b08393. Epub 2015 Sep 10.
5
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
7
Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers.
Biophys J. 2007 Jun 1;92(11):3817-29. doi: 10.1529/biophysj.106.097782. Epub 2007 Mar 9.
8
A challenge for green chemistry: designing molecules that readily dissolve in carbon dioxide.
Chem Commun (Camb). 2004 Sep 7(17):1885-8. doi: 10.1039/b404406c. Epub 2004 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验