Suppr超能文献

利用基于统一医学语言系统(UMLS)集成的卷积神经网络(CNN)文本索引增强医学图像检索

Enhancing Medical Image Retrieval with UMLS-Integrated CNN-Based Text Indexing.

作者信息

Gasmi Karim, Ayadi Hajer, Torjmen Mouna

机构信息

Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka 72388, Saudi Arabia.

Information Retrieval and Knowledge Management Research Laboratory, York University, Toronto, ON M3J 1P3, Canada.

出版信息

Diagnostics (Basel). 2024 Jun 6;14(11):1204. doi: 10.3390/diagnostics14111204.

Abstract

In recent years, Convolutional Neural Network (CNN) models have demonstrated notable advancements in various domains such as image classification and Natural Language Processing (NLP). Despite their success in image classification tasks, their potential impact on medical image retrieval, particularly in text-based medical image retrieval (TBMIR) tasks, has not yet been fully realized. This could be attributed to the complexity of the ranking process, as there is ambiguity in treating TBMIR as an image retrieval task rather than a traditional information retrieval or NLP task. To address this gap, our paper proposes a novel approach to re-ranking medical images using a Deep Matching Model (DMM) and Medical-Dependent Features (MDF). These features incorporate categorical attributes such as medical terminologies and imaging modalities. Specifically, our DMM aims to generate effective representations for query and image metadata using a personalized CNN, facilitating matching between these representations. By using MDF, a semantic similarity matrix based on Unified Medical Language System (UMLS) meta-thesaurus, and a set of personalized filters taking into account some ranking features, our deep matching model can effectively consider the TBMIR task as an image retrieval task, as previously mentioned. To evaluate our approach, we performed experiments on the medical ImageCLEF datasets from 2009 to 2012. The experimental results show that the proposed model significantly enhances image retrieval performance compared to the baseline and state-of-the-art approaches.

摘要

近年来,卷积神经网络(CNN)模型在图像分类和自然语言处理(NLP)等各个领域都取得了显著进展。尽管它们在图像分类任务中取得了成功,但其对医学图像检索的潜在影响,特别是在基于文本的医学图像检索(TBMIR)任务中的影响,尚未得到充分实现。这可能归因于排序过程的复杂性,因为将TBMIR视为图像检索任务而非传统信息检索或NLP任务存在模糊性。为了弥补这一差距,我们的论文提出了一种使用深度匹配模型(DMM)和医学相关特征(MDF)对医学图像进行重新排序的新方法。这些特征包含医学术语和成像模态等分类属性。具体而言,我们的DMM旨在使用个性化的CNN为查询和图像元数据生成有效的表示,促进这些表示之间的匹配。通过使用基于统一医学语言系统(UMLS)元叙词表的语义相似性矩阵以及考虑一些排序特征的一组个性化过滤器,我们的深度匹配模型可以如前所述有效地将TBMIR任务视为图像检索任务。为了评估我们的方法,我们对2009年至2012年的医学ImageCLEF数据集进行了实验。实验结果表明,与基线方法和现有技术方法相比,所提出的模型显著提高了图像检索性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b584/11172273/4fd35476613b/diagnostics-14-01204-g001.jpg

相似文献

1
Enhancing Medical Image Retrieval with UMLS-Integrated CNN-Based Text Indexing.
Diagnostics (Basel). 2024 Jun 6;14(11):1204. doi: 10.3390/diagnostics14111204.
2
Term dependency extraction using rule-based Bayesian Network for medical image retrieval.
Artif Intell Med. 2023 Jun;140:102551. doi: 10.1016/j.artmed.2023.102551. Epub 2023 Apr 17.
3
Enhancing Sketch-Based Image Retrieval by CNN Semantic Re-ranking.
IEEE Trans Cybern. 2020 Jul;50(7):3330-3342. doi: 10.1109/TCYB.2019.2894498. Epub 2019 Mar 15.
4
A novel biomedical image indexing and retrieval system via deep preference learning.
Comput Methods Programs Biomed. 2018 May;158:53-69. doi: 10.1016/j.cmpb.2018.02.003. Epub 2018 Feb 6.
6
Document/query expansion based on selecting significant concepts for context based retrieval of medical images.
J Biomed Inform. 2019 Jul;95:103210. doi: 10.1016/j.jbi.2019.103210. Epub 2019 May 17.
8
CapsTM: capsule network for Chinese medical text matching.
BMC Med Inform Decis Mak. 2021 Jul 30;21(Suppl 2):94. doi: 10.1186/s12911-021-01442-9.
10
Text-based multi-dimensional medical images retrieval according to the features-usage correlation.
Med Biol Eng Comput. 2021 Oct;59(10):1993-2017. doi: 10.1007/s11517-021-02392-0. Epub 2021 Aug 20.

引用本文的文献

1
Editorial for the Special Issue "Medical Data Processing and Analysis-2nd Edition".
Diagnostics (Basel). 2025 May 4;15(9):1170. doi: 10.3390/diagnostics15091170.

本文引用的文献

1
Term dependency extraction using rule-based Bayesian Network for medical image retrieval.
Artif Intell Med. 2023 Jun;140:102551. doi: 10.1016/j.artmed.2023.102551. Epub 2023 Apr 17.
2
Multi-Modal Understanding and Generation for Medical Images and Text via Vision-Language Pre-Training.
IEEE J Biomed Health Inform. 2022 Dec;26(12):6070-6080. doi: 10.1109/JBHI.2022.3207502. Epub 2022 Dec 7.
3
Document/query expansion based on selecting significant concepts for context based retrieval of medical images.
J Biomed Inform. 2019 Jul;95:103210. doi: 10.1016/j.jbi.2019.103210. Epub 2019 May 17.
5
Medical Text Classification Using Convolutional Neural Networks.
Stud Health Technol Inform. 2017;235:246-250.
6
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.
Neurocomputing (Amst). 2016 Feb 12;177:75-88. doi: 10.1016/j.neucom.2015.11.008. Epub 2015 Nov 17.
8
Semi-Supervised Learning to Identify UMLS Semantic Relations.
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:67-75. eCollection 2014.
9
On combining image-based and ontological semantic dissimilarities for medical image retrieval applications.
Med Image Anal. 2014 Oct;18(7):1082-100. doi: 10.1016/j.media.2014.06.009. Epub 2014 Jul 2.
10
Evaluating performance of biomedical image retrieval systems--an overview of the medical image retrieval task at ImageCLEF 2004-2013.
Comput Med Imaging Graph. 2015 Jan;39:55-61. doi: 10.1016/j.compmedimag.2014.03.004. Epub 2014 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验