Suppr超能文献

基于多源信息融合的数控机床主轴热误差智能传感

Intelligent Sensing of Thermal Error of CNC Machine Tool Spindle Based on Multi-Source Information Fusion.

作者信息

Yang Zeqing, Liu Beibei, Zhang Yanrui, Chen Yingshu, Zhao Hongwei, Zhang Guofeng, Yi Wei, Zhang Zonghua

机构信息

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China.

Key Laboratory of Hebei Province on Scale-Span Intelligent Equipment Technology, Hebei University of Technology, Tianjin 300130, China.

出版信息

Sensors (Basel). 2024 Jun 3;24(11):3614. doi: 10.3390/s24113614.

Abstract

Aiming at the shortcomings of single-sensor sensing information characterization ability, which is easily interfered with by external environmental factors, a method of intelligent perception is proposed in this paper. This method integrates multi-source and multi-level information, including spindle temperature field, spindle thermal deformation, operating parameters, and motor current. Firstly, the internal and external thermal-error-related signals of the spindle system are collected by sensors, and the feature parameters are extracted; then, the radial basis function (RBF) neural network is utilized to realize the preliminary integration of the feature parameters because of the advantages of the RBF neural network, which offers strong multi-dimensional solid nonlinear mapping ability and generalization ability. Thermal-error decision values are then generated by a weighted fusion of different pieces of evidence by considering uncertain information from multiple sources. The spindle thermal-error sensing experiment was based on the spindle system of the VMC850 (Yunnan Machine Tool Group Co., LTD, Yunnan, China) vertical machining center of the Yunnan Machine Tool Factory. Experiments were designed for thermal-error sensing of the spindle under constant speed (2000 r/min and 4000 r/min), standard variable speed, and stepped variable speed conditions. The experiment's results show that the prediction accuracy of the intelligent-sensing model with multi-source information fusion can reach 98.1%, 99.3%, 98.6%, and 98.8% under the above working conditions, respectively. The intelligent-perception model proposed in this paper has higher accuracy and lower residual error than the traditional BP neural network perception and wavelet neural network models. The research in this paper provides a theoretical basis for the operation, maintenance management, and performance optimization of machine tool spindle systems.

摘要

针对单传感器传感信息表征能力易受外部环境因素干扰的缺点,本文提出一种智能感知方法。该方法集成了多源、多层次信息,包括主轴温度场、主轴热变形、运行参数和电机电流。首先,通过传感器采集主轴系统内部和外部与热误差相关的信号,并提取特征参数;然后,利用径向基函数(RBF)神经网络实现特征参数的初步融合,因为RBF神经网络具有强大的多维立体非线性映射能力和泛化能力。接着,通过考虑来自多个源的不确定信息,对不同证据进行加权融合,生成热误差决策值。主轴热误差传感实验基于云南机床厂VMC850(云南机床集团股份有限公司,中国云南)立式加工中心的主轴系统。针对主轴在恒速(2000 r/min和4000 r/min)、标准变速和阶梯变速条件下的热误差传感进行了实验设计。实验结果表明,多源信息融合的智能传感模型在上述工况下的预测准确率分别可达98.1%、99.3%、98.6%和98.8%。本文提出的智能感知模型比传统BP神经网络感知和小波神经网络模型具有更高的精度和更低的残差。本文的研究为机床主轴系统的运行、维护管理和性能优化提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c903/11175269/3932d3b7d1e7/sensors-24-03614-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验