Suppr超能文献

利用机器学习结合化学计量学技术通过近红外光谱增强水泥生料氧化物的预测

Enhanced prediction of cement raw meal oxides by near-infrared spectroscopy using machine learning combined with chemometric techniques.

作者信息

Zhang Yongzhen, Yang Zhenfa, Wang Yina, Ge Xinting, Zhang Jianfeng, Xiao Hang

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, China.

Shandong University, Jinan, China.

出版信息

Front Chem. 2024 Jun 3;12:1398984. doi: 10.3389/fchem.2024.1398984. eCollection 2024.

Abstract

The component analysis of raw meal is critical to the quality of cement. In recent years, near-infrared (NIR) has been emerged as an innovative and efficient analytical method to determine the oxide content of cement raw meal. This study aims to utilize NIR spectroscopy combined with machine learning and chemometrics to improve the prediction of oxide content in cement raw meal. The Savitzky-Golay convolution smoothing method is applied to eliminate noise interference for the analysis of calcium carbonate ( ), silicon dioxide ( ), aluminum oxide ( ), and ferric oxide ( ) in cement raw materials. Different wavelength selection techniques are used to perform a comprehensive analysis of the model, comparing the performance of several wavelength selection techniques. The back-propagation neural network regression model based on particle swarm optimization algorithm was also applied to optimize the extracted and screened feature wavelengths, and the model prediction performance was checked and evaluated using and RMSE. In conclusion, the results indicate that NIR spectroscopy in combination with ML and chemometrics has great potential to effectively improve the prediction performance of oxide content in raw materials and highlight the importance of modeling and wavelength selection techniques. By enabling more accurate and efficient determination of oxide content in raw materials, NIR spectroscopy coupled with meta-modeling has the potential to revolutionize quality assurance practices in cement manufacturing.

摘要

生料的成分分析对水泥质量至关重要。近年来,近红外(NIR)已成为一种创新且高效的分析方法,用于测定水泥生料中的氧化物含量。本研究旨在利用近红外光谱结合机器学习和化学计量学,以改进水泥生料中氧化物含量的预测。采用Savitzky-Golay卷积平滑方法消除噪声干扰,用于分析水泥原料中的碳酸钙( )、二氧化硅( )、氧化铝( )和氧化铁( )。使用不同的波长选择技术对模型进行全面分析,比较几种波长选择技术的性能。基于粒子群优化算法的反向传播神经网络回归模型也被应用于优化提取和筛选的特征波长,并使用 和均方根误差(RMSE)对模型预测性能进行检查和评估。总之,结果表明近红外光谱结合机器学习和化学计量学有很大潜力有效提高原料中氧化物含量的预测性能,并突出了建模和波长选择技术的重要性。通过能够更准确、高效地测定原料中的氧化物含量,近红外光谱结合元建模有可能彻底改变水泥制造中的质量保证实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f6f/11184222/67b8845ad012/fchem-12-1398984-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验