Suppr超能文献

共价组织蛋白酶S抑制剂的结构修饰:对亲和力、选择性和渗透性的影响

Structural Modifications of Covalent Cathepsin S Inhibitors: Impact on Affinity, Selectivity, and Permeability.

作者信息

Meta Mergim, Zimmer Collin, Fuchs Natalie, Zecher Maximilian Johannes, Lahu Albin, Schirmeister Tanja

机构信息

Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz Germany.

出版信息

ACS Med Chem Lett. 2024 Jun 4;15(6):837-844. doi: 10.1021/acsmedchemlett.4c00050. eCollection 2024 Jun 13.

Abstract

Cathepsin S (catS) is a member of the cysteine protease family with limited tissue distribution, which is predominantly found in antigen-presenting cells. Due to overexpression and overactivity of catS in numerous cancers, inhibition of catS is supposed to improve the antitumor response. Here, we explore the potential of small-molecule catS inhibitors emphasizing their in vitro pharmacodynamics and pharmacokinetics. Membrane permeability of selected inhibitors was measured with a Parallel Artificial Membrane Permeation Assay and correlated to calculated physicochemical parameters and inhibition data. The binding kinetics and inhibition types of potent and selective new inhibitors with unexplored warheads were investigated. Our unique approach involves reversible masking of these potent warheads, allowing for further customization without compromising affinity or selectivity. The most promising inhibitors in this study include covalent aldehyde and ketone derivatives reversibly masked as hydrazones as potential candidates for therapeutic interventions targeting catalytic enzymes and modulating the immune response in cancer.

摘要

组织蛋白酶S(catS)是半胱氨酸蛋白酶家族的成员,其组织分布有限,主要存在于抗原呈递细胞中。由于catS在多种癌症中过度表达和过度活跃,抑制catS有望改善抗肿瘤反应。在此,我们探索小分子catS抑制剂的潜力,重点关注其体外药效学和药代动力学。使用平行人工膜渗透试验测量所选抑制剂的膜通透性,并将其与计算出的物理化学参数和抑制数据相关联。研究了具有未探索弹头的强效和选择性新抑制剂的结合动力学和抑制类型。我们独特的方法涉及对这些强效弹头进行可逆掩蔽,以便在不影响亲和力或选择性的情况下进行进一步定制。本研究中最有前景的抑制剂包括可逆地掩蔽为腙的共价醛和酮衍生物,作为靶向催化酶和调节癌症免疫反应的治疗干预潜在候选物。

相似文献

1
Structural Modifications of Covalent Cathepsin S Inhibitors: Impact on Affinity, Selectivity, and Permeability.
ACS Med Chem Lett. 2024 Jun 4;15(6):837-844. doi: 10.1021/acsmedchemlett.4c00050. eCollection 2024 Jun 13.
3
A road map for prioritizing warheads for cysteine targeting covalent inhibitors.
Eur J Med Chem. 2018 Dec 5;160:94-107. doi: 10.1016/j.ejmech.2018.10.010. Epub 2018 Oct 6.
6
Advances in Cathepsin S Inhibition: Challenges and Breakthroughs in Drug Development.
Pathophysiology. 2024 Sep 3;31(3):471-487. doi: 10.3390/pathophysiology31030035.
7
A comparative study of warheads for design of cysteine protease inhibitors.
Bioorg Med Chem Lett. 2017 Nov 15;27(22):5031-5035. doi: 10.1016/j.bmcl.2017.10.002. Epub 2017 Oct 3.
8
The design of potent hydrazones and disulfides as cathepsin S inhibitors.
Bioorg Med Chem. 2003 Mar 6;11(5):733-40. doi: 10.1016/s0968-0896(02)00468-6.

本文引用的文献

4
Cysteine cathepsins: A long and winding road towards clinics.
Mol Aspects Med. 2022 Dec;88:101150. doi: 10.1016/j.mam.2022.101150. Epub 2022 Oct 22.
6
Disposition of Nirmatrelvir, an Orally Bioavailable Inhibitor of SARS-CoV-2 3C-Like Protease, across Animals and Humans.
Drug Metab Dispos. 2022 May;50(5):576-590. doi: 10.1124/dmd.121.000801. Epub 2022 Feb 13.
7
An oral SARS-CoV-2 M inhibitor clinical candidate for the treatment of COVID-19.
Science. 2021 Dec 24;374(6575):1586-1593. doi: 10.1126/science.abl4784. Epub 2021 Nov 2.
9
Population pharmacokinetic analysis of RO5459072, a low water-soluble drug exhibiting complex food-drug interactions.
Br J Clin Pharmacol. 2021 Sep;87(9):3550-3560. doi: 10.1111/bcp.14771. Epub 2021 Mar 10.
10
Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19.
J Med Chem. 2020 Nov 12;63(21):12725-12747. doi: 10.1021/acs.jmedchem.0c01063. Epub 2020 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验