Li Xiang, Sun Yanchun, Zhou Le, Wang Haiyan, Xie Binbin, Lu Wen, Ning Jiqiang, Hu Yong
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China.
Mater Horiz. 2024 Aug 28;11(17):4133-4143. doi: 10.1039/d4mh00544a.
Birnessite has been regarded as a promising cathode material for aqueous zinc-ion batteries (ZIBs), but severe Jahn-Teller distortion and abrupt lattice collapse at deep charged states lead to serious problems such as poor capacity retention and short cycle life, which severely impede its practical applications. We herein report the construction of an advanced layered Fe-doped NaMnO·HO (Fe-NMO·HO) cathode to promote zinc-ion storage performance and electrochemical stability. An outstanding capacity of 102 mA h g at a high current density of 20 A g and a long cycle life of 6000 cycles have been achieved, comparable to the state-of-the-art manganese oxide-based cathodes. Both experimental measurements and theoretical calculations reveal that Fe substitution and lattice water cooperatively stabilize the interlayer structure, accelerate zinc-ion diffusion, and improve electronic conductivity. Notably, Fe doping is conducive to alleviating the Jahn-Teller effect and locking lattice water, which effectively prevents phase transformation and lattice collapse during the (de)intercalation process. This work sheds light on the synergistic interplay between dopants and structural water in zinc-ion storage and demonstrates instructive strategies to regulate layered structures for ZIBs.
水钠锰矿被认为是水系锌离子电池(ZIBs)中一种很有前景的正极材料,但在深度充电状态下严重的 Jahn-Teller 畸变和突然的晶格坍塌会导致诸如容量保持率差和循环寿命短等严重问题,这严重阻碍了其实际应用。我们在此报告构建一种先进的层状铁掺杂 NaMnO·HO(Fe-NMO·HO)正极,以提升锌离子存储性能和电化学稳定性。在 20 A g 的高电流密度下实现了 102 mA h g 的出色容量以及 6000 次循环的长循环寿命,与最先进的基于氧化锰的正极相当。实验测量和理论计算均表明,铁取代和晶格水协同稳定了层间结构,加速了锌离子扩散,并提高了电子导电性。值得注意的是,铁掺杂有利于减轻 Jahn-Teller 效应并锁定晶格水,这有效地防止了在(脱)嵌入过程中的相变和晶格坍塌。这项工作揭示了锌离子存储中掺杂剂与结构水之间的协同相互作用,并展示了调控 ZIBs 层状结构的指导性策略。