Zhao Chen, Cai Weiling, Hu Chengwei, Yuan Zheng
School of Artificial Intelligence, Nanjing Normal University, Nanjing, 210023, China.
Neural Netw. 2024 Oct;178:106428. doi: 10.1016/j.neunet.2024.106428. Epub 2024 Jun 4.
In overcoming the challenges faced in adapting to paired real-world data, recent unsupervised single image deraining (SID) methods have proven capable of accomplishing notably acceptable deraining performance. However, the previous methods usually fail to produce a high quality rain-free image due to neglecting sufficient attention to semantic representation and the image content, which results in the inability to completely separate the content from the rain layer. In this paper, we develop a novel cycle contrastive adversarial framework for unsupervised SID, which mainly consists of cycle contrastive learning (CCL) and location contrastive learning (LCL). Specifically, CCL achieves high-quality image reconstruction and rain-layer stripping by pulling similar features together while pushing dissimilar features further in both semantic and discriminant latent spaces. Meanwhile, LCL implicitly constrains the mutual information of the same location of different exemplars to maintain the content information. In addition, recently inspired by the powerful Segment Anything Model (SAM) that can effectively extract widely applicable semantic structural details, we formulate a structural-consistency regularization to fine-tune our network using SAM. Apart from this, we attempt to introduce vision transformer (VIT) into our network architecture to further improve the performance. In our designed transformer-based GAN, to obtain a stronger representation, we propose a multi-layer channel compression attention module (MCCAM) to extract a richer feature. Equipped with the above techniques, our proposed unsupervised SID algorithm, called CCLformer, can show advantageous image deraining performance. Extensive experiments demonstrate both the superiority of our method and the effectiveness of each module in CCLformer. The code is available at https://github.com/zhihefang/CCLGAN.
在克服适应配对真实世界数据所面临的挑战方面,最近的无监督单图像去雨(SID)方法已证明能够实现显著可接受的去雨性能。然而,由于对语义表示和图像内容缺乏足够的关注,先前的方法通常无法生成高质量的无雨图像,这导致无法将内容与雨层完全分离。在本文中,我们为无监督SID开发了一种新颖的循环对比对抗框架,该框架主要由循环对比学习(CCL)和位置对比学习(LCL)组成。具体而言,CCL通过在语义和判别潜在空间中将相似特征拉近,同时将不相似特征进一步推开,实现高质量的图像重建和雨层剥离。与此同时,LCL隐式地约束不同样本相同位置的互信息以保持内容信息。此外,最近受强大的可有效提取广泛适用的语义结构细节的分割一切模型(SAM)的启发,我们制定了一种结构一致性正则化,使用SAM对我们的网络进行微调。除此之外,我们尝试将视觉Transformer(VIT)引入我们的网络架构以进一步提高性能。在我们设计的基于Transformer的GAN中,为了获得更强的表示,我们提出了一种多层通道压缩注意力模块(MCCAM)来提取更丰富的特征。配备上述技术,我们提出的无监督SID算法CCLformer可以展现出优异的图像去雨性能。大量实验证明了我们方法的优越性以及CCLformer中每个模块的有效性。代码可在https://github.com/zhihefang/CCLGAN获取。